
Enhanced Web
Interfaces for
Administering
Invenio Digital
Library

João Batista

CERN openlab
7 September 2012

http://www.cern.ch/openlab

CERN openlab

oTN-2011-01 openlab Summer Student Report

Enhanced Web Interfaces for Administering
Invenio Digital Library

João Batista
Samuele Kaplun

7 September 2012
Version 1

Distribution: Public

 Abstract.. 2
 Introduction...3
1 Technologies...3

1.1 SQLAlchemy..3
1.2 Jinja2..3
1.3 Flask...3
1.4 WTForms..4
1.5 Bootstrap..4

2 Development..4
2.1 Feature implementation..4

2.1.1 Collection tree management...4
2.1.2 Collection editing...5

3 Future Work...8

Page 1 of 8

Abstract
Invenio is an open source web-based application that implements a digital library or document

server, and it's used at CERN as the base of the CERN Document Server Institutional Repository and the
Inspire High Energy Physics Subject Repository.

The purpose of this work was to reimplement the administrative interface of the search engine in
Invenio, using new and proved open source technologies, to simplify the code base and lay the foundations
for the work that it will be done in porting the rest of the administrative interfaces to use these newer
technologies.

In my time as a CERN openlab summer student I was able to implement some of the features for the
WebSearch Admin Interfaces, enhance some of the existing code with new features and find solutions to
technical challenges that will be common when porting the other administrative interfaces modules.

Page 2 of 8

Introduction
Invenio is an open source web application that is mainly developed using Python on top of a MySQL

database to create a digital library or document server, to manage all sorts of files, such as images,
documents, videos, articles and their corresponding metadata. The unit of information in Invenio is the
record, which is composed of metadata and can have one or more files associated with. Through this concept
it's possible to get statistics, extract relations among records, rank them and manage them. This software is
used at CERN as the base of the CERN Document Server Institutional Repository and the Inspire High
Energy Physics Subject Repository.

To understand the platform is paramount to introduce MARC, a standard that is the underlying
representation of records in Invenio, and is the standard format for storage of bibliographic records and
related information in a machine-readable format .

The theme of the work was "Enhanced web Interfaces for Administering the Invenio Digital library"
and the purpose was to start to reimplement the administrative interface of the search engine, which allows
the management of collections of records and how they are ranked and organized. Collections are groups of
records that, simply put, are matched by a search query. These groups are organized in trees and can be
either virtual or real.

Invenio uses a philosophy of rapid prototyping, and organic growth, that is also the main reason for
being written in Python, and it has reached the point where it is useful to rewrite part of the code base to take
advantage of modern frameworks.

Some technologies were a prerequisite to achieve the proposed goal, and all of them are open-source
and are actively maintained and community proven. These components are Flask, Jinja2 and SQLAlchemy
which are respectively a microframework to handle web requests, a templating system and an object
relational mapper. These tools put together will be the basis for the next version of Invenio, and will be
further explained in the following sections.

1 Technologies
As said previously, these technologies are a pre-requisite, and their function in the project is herein

presented.

1.1 SQLAlchemy

SQLAlchemy is an object relational mapper (ORM) that provides high efficiency access to the
database, mapping concepts to the proper database tables and makes them available as Python objects.

Using this tool it's possible to hide the complexity of the database from the logic of the application,
which allows the coming Invenio developers to work with simple objects, their properties and their relations
without having to have a deep understanding of how the database is specified. Moreover it will help Invenio
to become database engine independent.

1.2 Jinja2

Jinja2 is a templating engine, that simplifies the creation of templates to present the data in HTML.
Furthermore, this system allows the creation of templates that can be used by the other developers which
reduces even further the need to repeat code, making the code base more manageable and maintainable.
Additionally it forces the strict separation between business logic and presentation.

1.3 Flask

Flask is a powerful microframework to handle web requests, written in Python. This is the basis for
handling HTTP requests for the next branch of Invenio, and closely tied with SQLAlchemy makes it very
easy to manipulate Python objects that are mapped to the database content and extract the information that is
really needed. Furthermore, Flask has various modules that integrate easily SQLAlchemy and Jinja2 which
allows an even better interoperability between them.

Page 3 of 8

1.4 WTForms

WTForms is a Python library to ease the creation of forms, and has a plethora of methods that range
from making the validation of the forms to populate the object with the form's data.

1.5 Bootstrap

Bootstrap is a frontend framework, meaning that it provides a set of tools to customize the look and
feel of the web application, and besides that, it provides a simple way to have a cohesive look throughout the
application and predictable built-in responsiveness for smaller screens.

2 Development

The development of the project, started by getting an understanding of Invenio, it's structure and the
modules implied in the rewriting of the WebSearch administrative module. Then it was necessary to
understand how these new tools worked, and how to use them properly to fulfil the objectives of this work.

Firstly the concept of web search was explained, in which the records are aggregated by collections
of records that are expressed by a query. this query can specify MARC fields, to aggregate by any type of
metadata type and values that are contained in the existing records.

Then MARC was explained to better understand the underlying platform and its structure.

2.1 Feature implementation

2.1.1 Collection tree management

The first feature to be implemented was the management of the collection tree, that looked like this
in the previous version:

Page 4 of 8

Illustration 1: Old Collection tree

The objective here was to simplify the user interface and the way the user interacts with the platform.
In order to achieve just that it was thought that a drag and drop approach would have been bettter, because it
can be faster and easier to understand and use.

What happens here, is that when an item is dragged to another point in any of the trees an AJAX
request is made to update the information about his placement. Here a few challenges had to be addressed,
firstly the dragging and dropping in Javascript, implemented by jQueryUI, had to be tweaked to show users
where in the tree they can put the item using placeholders. Furthermore to allow to easily put any item as a
subnode it was necessary to introduce, when dragging, some additional HTML and tweak the padding of a
few elements (the parent node, for instance) in order to make the experience more smooth and reliable.

To maintain the right order of the items, some original Invenio SQLAlchemy code was enhanced, in
the 'OrderedList' class, to make the sorting of the Collections easier.

2.1.2 Collection editing

To make the new visual style coherent, each of the associated attributes of a collection are now
placed in a dedicated tab, that constitutes the main collection form. This form was implemented with the help
of WTForms.

Page 5 of 8

Illustration 2: New Collection tree

Then the translations form was implemented, using WTForms,

The biggest challenge here was how to create a form, based on a dynamic list of languages,
WTForms is great for declarative forms but doesn't have an obvious implementation of procedurally
generated forms. Instead of the solution proposed in the in the official FAQ, that was judged not particularly
elegant, an alternative solution was pursued and eventually found: it consists of the following code snippet:

Page 6 of 8

def TranslationsForm(language_list_long, values):

 class _TranslationsForm(InvenioBaseForm):

 collection_id = HiddenField()

 for (lang, lang_long) in language_list_long:

 setattr(_TranslationsForm, lang,
TextField(_(unicode(lang_long,"utf-8")), default = \

 values.get(lang, '')))

 return _TranslationsForm

This function allows the creation of forms according to a Python dictionary where the keys are the
short name of a language and the values are the long name of the language. For example: “en” is short for
“English”. The values variable allows the field to be filed with an existing value.

Lastly, the management of the order of the Portalboxes was worked on. Portalboxes are a way to
display helpful information (which can contain HTML), that can be put in some places of the Collections
page to help the end user. This implementation reuses the concept of the Collection tree management:
Portalboxes can be dragged and dropped and an AJAX request is made each time the element is dropped on
its place in the list.

Page 7 of 8

Illustration 3: Portalboxes management

3 Future Work

First and foremost, the remaining WebSearch admin features should be implemented, allowing the
same functionality as the previous implementation. Beyond that some improvements can be made to existing
features in order to further improve their functionality.:

• For the collection tree management, allowing to collapse some of the trees to make big trees more
manageable would improve the usability.

• For the collection editing interface, when a field is altered and saved by pressing submit in the form,
and the page reloads, it should be opened on the same tab the submission was made.

Page 8 of 8

