

CERN openlab

Page 1 of 24

oTN-2010-01 Openlab Summer Student Report

TRoIE (Test-bench for Robustness of Industrial
Equipments) Reporting System

Gazmend Bajrami

Supervisor: Filippo Tilaro

27 August 2010

Version 2.1

Name of the note

 Page 2 of 24

Contents

Abstract ... 3
Introduction ... 3
Databases Overview ... 4
Database Design Process .. 4
Analysis phase .. 4
Database Tables .. 5
Design phase .. 8
Implementation Phase .. 10
Installing Roo .. 10
Spring Roo starting the project ... 11
Creating Entities and Fields ... 13
Using the IDE .. 16
Creating the web tier and loading the web server .. 19
Conclusion .. 20
Bibliography .. 21
Appendix: Database application code ... 22

Name of they note

 Page 3 of 24

Abstract

The aim of this project at CERN was to design and implement the database which contains
information about PLC’s vulnerabilities collected by the TRoIE test bench. Scanning different
computers, networks and PLCs is a very important process and a way to find out possible
vulnerabilities on these devices and to understand the weaknesses and the risks that they convey
with their operation on different environment. It is also an important step before taking any
preventative measures. Through the scanning we can identify the weaknesses of the system under
analysis and the information collected are very helpful to fix any issues in order to make the system
more secure. This could avoid that any possible attack can exploit these vulnerabilities to get access
to system and to the information as well. In this report we will describe all the steps taken from the
beginning of database design phase to the final implementation.

Key words: Vulnerabilities Report System, Spring Roo

Introduction

Over the last ten years the number of attacks is much higher than it was before as well as the
number of vulnerabilities is increased as the Figure 1 shows. Within this period the technology has
advanced very much and has changed the way of organizing the work. If from one hand it has made
it easier, on the other hand these technology improvements have introduced new vulnerabilities and
security issues.

Figure 1: Number of vulnerabilities per year [5].

The security holes can exist on: Operating systems, applications, and network protocols. A
vulnerability can be a programming error or misconfigurations that an attacker or an intruder can
exploit to gain unauthorized access. A scanning vulnerability is important to discover any
vulnerability which could compromise the stability of the entire system. In a second phase a
patching activity is necessary to resolve these security issues. In our specific case the TRoIE test
bench is finalized to test both the individual devices - before any deployment - and all the
components that are already part of the system.

Name of the note

 Page 4 of 24

Vulnerabilities scanning tools check for any hole on the particular target system and some of
the tools give information for potential solution. Scanning tool collect all the information during
the scanning process and create a list of vulnerabilities for the particular devices which is presented
in a final report. So far each security tool (for example Nessus, OpenVas etc.) produces its own
report presenting all the information in a specific structure. As a result all this amount of
information is difficult to read and manage. This is why in our project we decided to create a
database which will store and organize all the information taken from different scanning tools in a
uniform and homogeneous way. Moreover it will allow us to query the database for specific
information filtering by a particular device, model, test and so on.
After an initial analysis we have chosen to implement the database using the Spring Roo framework
which is a quite new and open source technology.

Databases Overview

A database is an organized collection of associated data that is stored for a specific purpose,
typically in digital form. This collection is arranged in a fixed structure, in such way that they easily
be accessed, managed, and updated. One way of classifying databases is according to types of
content: bibliographic, full-text, numeric, and images.
In computing, databases are sometimes classified according to their organizational approach. The
most used approach is the relational database, a tabular database. A distributed database is one that
can be dispersed or replicated among different points in a network. An object-oriented
programming database is one that is congruent with the data defined in object classes and
subclasses. In our case we have combined the object oriented programming database with relational
database using Spring Roo framework in combination with Hibernate technology. Moreover the
mentioned products let us to choose in a totally transparent way the specific Database Management
Systems (Oracle, MySQL, MSSQL, DB2 etc...).

Database Design Process

The database design process consists of some specific and ordered steps, which are mostly based on
three phases: analysis, design and implementation.

Analysis phase

In the analysis phase of the database design process we started to collect the necessary
information to store:

• All the data coming from Security analyzer applications.

• Be in line with the CRT requirements [8]

• Configuration environment used for the test

http://whatis.techtarget.com/definition/0,289893,sid9_gci212885,00.html�
http://whatis.techtarget.com/definition/0,289893,sid9_gci212681,00.html�
http://whatis.techtarget.com/definition/0,289893,sid9_gci212681,00.html�

Name of they note

 Page 5 of 24

• Exploited Attack Patterns
• Specific technical specifications related to PLCs/Industrial devices

After an initial comparison with the Nessus and OpenVas reports we established to organize the
database into these tables: Devices (PLCs), Tests, Vulnerabilities, Configuration I/O, Connection
Information, Application that are running on the device, Attacks, Monitoring System, Scanning tool,
Scanner. All these data are related to each other and necessary for the database.

Database Tables

Each of database tables holds specific information about the devices, specific performed tests,
network configuration and possible related vulnerabilities. In the following we will give a brief
description for each table.

• Device Table: This table contains the information about the scanned devices

Field Name Data Type Description
Device ID INT Auto

Increment
This filed is Primary Key field the contain IDs of different
devices that have been scanned

Manufacturer Varchar Information about the Manufacture of the Device
Device Name Varchar The name of the Device
Device Type Varchar Describes the type of device
Order Number Varchar This field contain the Order Number for the device
Serial Number Varchar The Serial Number of the device
Firmware Version Varchar Firmware version of the Device
Operating System Varchar This field contain Operating System used by device

• Test Table: This table is used to holds information for each specific test against particular
devices.

Field Name Data Type Description
Test ID INT Auto

Increment
Is the ID for each different Test and it is a Primary
key field.

Test Name Varchar Name of the Test
Test-Start TimeDate The time and date where the Test start
Test-End TimeDate The time and date where the Test has finished
Termination Status Enum
Communication load Double Percentage of the scan cycle time left to the

communication

• Vulnerability Table: this table describes the discovered vulnerabilities. The table contains
the information for the risk related to the specific threat which affects the device.

Name of the note

 Page 6 of 24

Name of the Field Data Type Description
Vulnerability ID INT Auto

Increment
The ID for each Vulnerability

Impact Severity level Enum High, Low and Medium
Risk Factor Text This field describe the risk that threatens the device
Port Affected INT Communication Port
Service affected Varchar(30) Name of the service running on that specific port
Protocol affected Varchar(30) Name of the protocol which is affected
Synopsis Text General and quite short summary of the issue
Description Text Description of the issue
Possible Solution Text Possible solution to the specific issue
Packet Capture Blob Sequence Packets capture file
Plugin output Text Output of the plug-in used to perform the test

• Configuration I/O table: the Configuration I/O table contains the devices configuration
related to the I/O process.

Name of the Field Data Type Description
Configuration ID INT Auto

Increment

Number of Used Input INT Digital/Analog ports used as INPUT
Number of Used Output INT Digital/Analog ports used as OUTPUT
Input signal frequency Double Frequency of the signal in INPUT
Output signal frequency Double Frequency of the signal in OUTPUT

• Connection Info table: it will provide information about the network communication during
the tests.

Name of the Field Data Type Description
Connection ID INT Auto

Increment

Local port open INT Number of the open port in the target device for the specific
connection

Remote port open INT Number of the open port in the partner device for the
specific connection

Type of
communication
(protocol)

ENUM Name of the protocol used for the specific connection

IP of Target Varchar IP address of the target device
IP of Partner Varchar IP address of the partner device

Name of they note

 Page 7 of 24

Device partner ID INT ID of the partner
Active/Passive Enum Active if the target device will establish the communication.

Passive otherwise
Bit rate input Double/Float INPUT Data Bit/rate
Bit rate output Double/Float OUTPUT Data Bit/rate

• Application running table: this table will keep track of information about the application
that are running in the device

Name of the Field Data Type Description
Application running ID INT Auto

Increment

Instruction set used Enum Type of the instruction used in the target Data Blocks
Block Type in execution Enum Numbers of the Block Type used during the tests (OB1,

0B80, etc…)
Scan Cycle Time Duration of the scan cycle in msec
Protection Text Type of the protection
Description of protection Text Description of the used protection
Startup mode Enum Warm /Cold/ Hot Restart
CPU usage Double/decimal Percentage of the CPU usage during a normal

execution

• Attack pattern table: represents the possible attack that can exploit various different
vulnerabilities to gain unauthorized access.

Name of the Field Data Type Description
 ID INT Auto

Increment

Parent ID INT ID of the father Attack pattern
Name Varchar Name of the attack pattern
Description Text Description of the attack pattern

• Monitoring System table: it will keep track of Monitoring System used when the
vulnerabilities are detected.

Name of the Field Data Type Description
Monitoring ID INT Auto

Increment

Type of monitoring Enum I/O Process, Communication, PLC status Monitoring
Description Text Description of the specific monitoring system

Name of the note

 Page 8 of 24

• Scanning tool table: this table provides the information for possible plug-in that some
scanner provides, for example Nessus consists of different sub-plug-ins.

Field Name Data type Description
ID INT ID of the scanner the plug-in

belongs to
Tool ID INT Auto Increment
Tool Name Text Name of the plug-in
Tool Family Text Family of the specific plug-in

(General, Service Detection...)
Tool Version Text Version of the plug-in
Description Text Description of the plug-in

• Scanner table: will provide information about the Security analyzers application.

Field Name Data type Description
ID INT Auto Increment
Name Text Name of the scanner
Version Text Version of the scanner
Description Text Description of the scanner tool

Design phase

The design phase brings up the concept of 'data models'. Data models are data flow diagrams
and system flow charts or schemas, which are used to present the data requirements at different
levels of abstraction. In this phase we have produced a conceptual model for the database, using
Entity Relationship Diagrams or E R diagrams. The E-R diagram for our database is presented in
the figure 2.

Name of they note

 Page 9 of 24

 Figure 2: The E-R diagram for database

The E-R diagram in figure 2 shows the database tables and the relationships between the tables. In
this database we have used two types of relationships: One-To-Many and Many-To-Many.

OneToMany relationships in database’s E-R diagram are between:

• Device and Test- this relationship is defined because one device can be tested more than one
time with different configuration.

• Configuration I/O and Test - one test can have only one configuration I/O, but one

configuration of Input and Output can be used in different tests.

• Application running and Test-

• Attack pattern and Vulnerabilities – An attack can exploit different vulnerabilities.

• Scanning Tool and Vulnerabilities - As we mention before the table Scanning tool provide
information for the plug-in that some scanner offer. This relationship is One-To-Many
because different vulnerabilities can be related to one plug-in

Name of the note

 Page 10 of 24

• Scanner and Scanning tool - A scanner provide more than one plug-in.

Many-To-Many relationships in database’s E-R diagram are between:

• Test and Vulnerabilities – under the test we can detect more vulnerabilities, and one
vulnerability can be detected with different tests.

• Test and Connection Info -

Implementation Phase

We have chosen Spring Roo to implement our database: it is an open source software and
easy-to-use tool for building application in Java. Spring Roo uses some useful technologies (such as
Spring Framework, Spring Security and Spring Web Flow), Maven, Java Server Pages (JSP), Java
Persistence API (JPA, such as Hibernate), Tiles and AspectJ [Roo]. It is a high productivity and
efficient tool: with Roo we can build sophisticated enterprise applications. It let us choose we can
choose various different databases for our project. Spring Roo is very flexible tool, it means that if
we want to change something like, deleting, editing a file or removing the Roo it is simple, just do
it.

Installing Roo

Roo as we already know is an open source tool and a standard Java application, everyone can
download it on the Web: http://www.springsource.org/roo. First we download Spring Roo for the
specific operating system but before we installed Spring Roo, we have to download and install

http://www.springsource.org/roo�

Name of they note

 Page 11 of 24

• Java 6 JKD

• Apache Maven

Roo requires JDK and Maven, it is recommended to download and install the latest versions. We
also installed Eclipse because it is easy to import the code generated by Spring Roo.
Spring Roo is easy and simple to install, we just Unzip the Roo installation ZIP to a directory we
choose.

Then:

• For Windows users: Windows, add $ROO_HOME\bin to your %PATH% environment

variable

• For Linux or Apple: create a symbolic link using a command such as sudo ln -s

$ROO_HOME/bin/roo.sh /usr/bin/roo

Spring Roo's main user interface is a command-line shell. Next we verified if the Roo has been
installed correctly. To verify it we have to go to Windows command line cmd and type the
following commands:

The logo of Roo

19

shows that it has been installed correctly.

Spring Roo starting the project

Once we have installed Roo and test if it has been installed correctly, than we can start to create the
database. First as we saw on the figure above we created a directory called “Roo” in which Spring
Roo will store the projects. Spring roo provides very useful features: for examples the TAB key is a
command line completion and the command "hint" provides information for the step-by-step
commands we have to type. If we type “hint” and then ENTER we will see this:

Name of the note

 Page 12 of 24

The “hint” command describes the steps we have go through and what to do next. Now we simple
start creating the project by typing this command on the Roo shell:

When we used the command project it creates a new project.

 project --topLevelPackage ch.cern.Siemens

--topLevelPackage

The uppermost package name (this becomes the <groupId> in Maven and also the '~' value
when using Roo's shell); no default value (mandatory) [roo]

Name of they note

 Page 13 of 24

--projectName

The name of the project (last segment of package name used as default); no default value
[roo].

Once the project structure has been created by Roo we continue by installing a persistence
configuration for our application. Roo uses the Java Persistence API (JPA) which provides an
appropriate abstraction to achieve object-relational level. JPA takes care of mappings between our
persistent domain objects (entities) and their underlying database tables. To install or change the
persistence configuration in our project we can use the persistence setup

 command [Roo].

As we ca see in our project we have used Hibernate as object-relational mapping (ORM)-
provider. This is one of the three providers that Roo offers. We have chosen the Hypersonic in-
memory database for testing purposes. Hibernate supports these databases in Roo:

Creating Entities and Fields

After we have created the project it is time to start creating the domain entities and fields form the
E-R diagram. To create entities in Roo we can use entity command. One of the optional required
attribute of entity command is --class and we have used also the attribute

-testAutomatically
which creates integrated tests for the entity.

http://static.springsource.org/spring-roo/reference/html/command-index.html#command-index-persistence-setup�

Name of the note

 Page 14 of 24

In this case we have created the entity called PLCTesting, this is the same table like in E-R diagram
for Tests, but Roo does not allow using the word “Test” as a name for entity. Now that we have
created the table we can continue by adding the fields in the table by typing the command field and
the attributes for this field. After the command field we have to choose the data type for that field.

Roo offers this data types. The commands Field set and Field reference are used to create the
relationships between tables. Based on the Spring Roo reference with Field set and Field reference
we can define these relationships:

field reference

• Adds a private reference field to an existing Java source file (eg the 'many' side of a many-
to-one)

field reference --fieldName –type

--fieldName

• The name of the field to add; no default value (mandatory)
--type

• The Java type of the entity to reference; no default value (mandatory)
--class

• The name of the class to receive this field; default if option not present: '*'

field set

• Adds a private Set field to an existing Java source file (eg the 'one' side of a many-to-one)
field set --fieldName --element
--fieldName

• The name of the field to add; no default value (mandatory)
--element

• The entity which will be contained within the Set; no default value (mandatory)
--class

• The name of the class to receive this field; default if option not present: '*'

With the command shows in the figure below we have created the field called “Name” and the data
type for this field is string.

Name of they note

 Page 15 of 24

In same way we have created all the fields for our database. As we have seen our database contains
some enum fields. How we created the enum fields? It is simple just write:

enum type --class ch.cern.Siemens.ImpactEnum

enum constant --name Value 1
enum constant --name Value 2

ImpactEnum is the name of the enum which is created on the topLevel domain, and the following
commands added the Value 1 and Value 2 as members of enum.

Also in database we have a field in the table Vulnerabilities which is Blob type. Roo dose not
support Blob data type, but the solution for this is that we can change the data type after we will
import our application to Eclipse by adding these commands:

public class Vulnerabilities {

 @
 @

Lob
Column(name

 private byte PacketCapture;
 = "PacketCapture")

}

Finally after we created the project, database, all entities and fields we instruct Roo to
perfom some integration tests by typing the command perfom tests. As we can see in the figure below
Roo has issued a Maven command (equivalent to running 'mvn test

' outside the Roo shell) in order to
execute the integration tests. All tests have passed, Roo has generated 9 integration tests per domain object
resulting in a total of 36 integration tests for all 4 domain objects.

Name of the note

 Page 16 of 24

Using the IDE

 Roo projects can be used in different IDE. All the Roo annotations start with the symbol @ and the
word Roo like this @Roo. SpringSource offers a tool which is free of charge called SpingSource
Tool Suite (STS), but as an IDE for our project we have chose Eclipse. Before importing the project
we have to type the command perform eclipse.

Name of they note

 Page 17 of 24

As the next step after performing the eclipse command we can go to Eclipse and select File>
Import> General > Existing Projects into Workspace; then we select the directory of our project and
click Finish.

For example if we go to the table PLCTesting we will see this code:

import javax.persistence.Entity;
import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.tostring.RooToString;
import org.springframework.roo.addon.entity.RooEntity;
import java.util.Date;
import javax.persistence.Temporal;
import javax.persistence.TemporalType;
import org.springframework.format.annotation.DateTimeFormat;
import ch.cern.siemens.TerminationStatusEnum;
import javax.persistence.Enumerated;

Name of the note

 Page 18 of 24

import ch.cern.siemens.siemens.domain.Device;
import javax.persistence.ManyToOne;
import javax.persistence.JoinColumn;
import ch.cern.siemens.siemens.domain.ConfigurationIO;
import ch.cern.siemens.siemens.domain.ApplicationRunning;
import java.util.Set;
import javax.persistence.ManyToMany;
import javax.persistence.CascadeType;

@Entity
@RooJavaBean
@RooToString
@RooEntity
public class PLCTesting {

 private String Name;

 @Temporal(TemporalType.TIMESTAMP)
 @DateTimeFormat(style = "S-")
 private Date TimeStrat;

 @Temporal(TemporalType.TIMESTAMP)
 @DateTimeFormat(style = "S-")
 private Date TimeEnd;

 @Enumerated
 private TerminationStatusEnum TerminationStatus;

 private Double CommunicationLoad;

 @ManyToOne(targetEntity = Device.class)
 @JoinColumn
 private Device Device;

 @ManyToOne(targetEntity = ConfigurationIO.class)
 @JoinColumn
 private ConfigurationIO ConfigurationIO;

 @ManyToOne(targetEntity = ApplicationRunning.class)
 @JoinColumn
 private ApplicationRunning ApplicationRunning;

 @ManyToMany(cascade = CascadeType.ALL)
 private Set<ch.cern.siemens.siemens.domain.ConnectionInfo>
ConnectionInfo = new
java.util.HashSet<ch.cern.siemens.siemens.domain.ConnectionInfo>();

 @ManyToMany(cascade = CascadeType.ALL)
 private Set<ch.cern.siemens.siemens.domain.Vulnerabilities>
Vulnerability = new
java.util.HashSet<ch.cern.siemens.siemens.domain.Vulnerabilities>();
}

Name of they note

 Page 19 of 24

The code above describes each field of the PLCTesting table, and the fileds that are used as
relationships with other tables. Every change we do on the eclipse - like adding or removing fields
or changing data type- will be detected changed automatically.

Creating the web tier and loading the web server

As a next step for the project it is to scaffold a Web tier for our application. This can be
accomplished via the controller command. The most appropriate way to generate controllers and
all relevant Web artefacts is to use the controller all command:

roo> controller all --package ~.web

This command will scan our project for any domain entities, fields and scaffold a Spring MVC
controller for each entity detected.

To deploy our application in a Web container we use the command below in the root of our project
to start the Tomcat MVC front-end.

mvn tomcat:run

After we performed all the commands above, to see the Web container go to the following URL
http://localhost:8080/siemens.

Name of the note

 Page 20 of 24

One way to find the data in the database with Sping Roo is through some finders that search for the
information in the table and create a list of these information. We can perform a search
Vulnerabilities’ table with this command:

finder add –finderName FindVulnerabilitisByRiskFactor –class ~.domain.Vulnerabilities

Another way to query the database is by creating methods in java that will query the database.

Conclusion

Considering that the number of vulnerabilities is increasing, the data that security analyzer
provide us are very important. The reports structure produced by the current security analyzers is
difficult to read and manage

. We consider that our database will make it much easier and in a more
proficient way. The database we have defined is very flexible and the integrated Hibernate product
is an open source and offers a wide choice of database management systems. We consider that this
application will be very useful for the future of the TRoIE project.

Name of they note

 Page 21 of 24

Bibliography

[1] Spring Roo - Reference Documentation

[2] Rogers. Russ, Nessus Network Auditing, Second Edition, May 2008

[3] Rob. Peter. , Coronel. Carlos,

Database Systems: Design, Implementation, and Management

[4] http://blogs.iss.net/archive/2007XFReport-Day1.html

[5] http://en.wikipedia.org/wiki/Database

[6] http://searchsqlserver.techtarget.com/definition/database

[7] http://www.springsource.org/roo

[8] ISA Security Compliance Institute- Embedded Device Security Assurance

http://blogs.iss.net/archive/2007XFReport-Day1.html�
http://en.wikipedia.org/wiki/Database�
http://searchsqlserver.techtarget.com/definition/database�
http://www.springsource.org/roo�

Name of the note

 Page 22 of 24

Appendix: Database application code

project --topLevelPackage ch.cern.Siemens

persistence setup --provider HIBERNATE --database HYPERSONIC_IN_MEMORY

enum type --class ch.cern.Siemens.TerminationStatusEnum
enum constant --name Val1
enum constant --name Val2

enum type --class ch.cern.Siemens.ImpactSeverityEnum
enum constant --name Val1
enum constant --name Val2
enum constant --name Val3

enum type --class ch.cern.Siemens.ActivePassiveEnum
enum constant --name Val1
enum constant --name Val2

enum type --class ch.cern.Siemens.TypeOfCommunicatioEnum
enum constant --name Val1
enum constant --name Val2

enum type --class ch.cern.Siemens.InstructionSetEnum
enum constant --name Val1
enum constant --name Val2

enum type --class ch.cern.Siemens.ListOfBlockEnum
enum constant --name Val1
enum constant --name Val2

entity --class ~.domain.PLCTesting --testAutomatically
field string --fieldName Name
field date --fieldName TimeStrat --type java.util.date --timeFormat
field date --fieldName TimeEnd --type java.util.date --timeFormat
field enum --fieldName TerminationStatus --type
ch.cern.Siemens.TerminationStatusEnum
field number --fieldName CommunicationLoad --type java.lang.Double

entity --class ~.domain.Vulnerabilities --testAutomatically
field string --fieldName RiskFactor
field enum --fieldName ImpactSeverityLevel --type
ch.cern.Siemens.ImpactSeverityEnum
field string --fieldName ServiceAffected
field number --fieldName PortAffected --type java.lang.Integer
field string --fieldName ProtocolAffected
field string --fieldName Synopsis --sizeMax 255
field string --fieldName Description --sizeMax 255
field string --fieldName PossibleSolution --sizeMax 255
field string --fieldName PluginOutput --sizeMax 255

Name of they note

 Page 23 of 24

field string --fieldName CVE

entity --class ~.domain.Device --testAutomatically
field string --fieldName Name
field string --fieldName Type
field string --fieldName Manufacture
field string --fieldName OrderNumber
field string --fieldName SerialNumber
field string --fieldName FirmwareVersion
field string --fieldName OperatingSystem

entity --class ~.domain.ConnectionInfo
field string --fieldName LocalPortOpen
field string --fieldName RemotePortOpen
field string --fieldName IpOfTarget
field string --fieldName IpOfPartner
field number --fieldName DevicePartnerID --type java.lang.Integer
field number --fieldName BitRateInput --type java.lang.Double
field number --fieldName BitRateOutput --type java.lang.Double
field enum --fieldName ActivePassive --type
ch.cern.Siemens.ActivePassiveEnum

entity --class ~.domain.MonitoringSystem --testAutomatically
field string --fieldName TypeOfMonitoring
field string --fieldName Description --sizeMax 255

entity --class ~.domain.Scanner --testAutomatically
field string --fieldName Name
field string --fieldName ScannerVersion
field string --fieldName Description --sizeMax 255

entity --class ~.domain.ScanningTool --testAutomatically
field number --fieldName ToolID --type java.lang.Integer
field string --fieldName ToolName
field string --fieldName ToolFamily
field string --fieldName ToolVersion
field string --fieldName Description --sizeMax 255

entity --class ~.domain.ApplicationRunning --testAutomatically
field date --fieldName TimeCycle --type java.util.Date --timeFormat
field string --fieldName Protection
field string --fieldName Description --sizeMax 255
field string --fieldName StartupMode
field number --fieldName CpuUsage --type java.lang.Double
field enum --fieldName InstructionSetUse --type
ch.cern.Siemens.InstructionSetEnum
field enum --fieldName ListOfBlockTypeInExecution --type
ch.cern.Siemens.ListOfBlockEnum

entity --class ~.domain.ConfigurationIO

Name of the note

 Page 24 of 24

field number --fieldName NumberOfUsedInput --type java.lang.Integer
field number --fieldName NumberOfUsedOutput --type java.lang.Integer
field number --fieldName InputSignalFrequency --type java.lang.Double
field number --fieldName OutputSignalFrequency --type java.lang.Double

entity --class ~.domain.AttackPattern --testAutomatically
field string --fieldName Name

field string --fieldName Description --sizeMax 255

field reference --fieldName PartnerID --type ~.domain.AttackPattern

field reference --class ~.domain.Device --fieldName Device --type
~.domain.PLCTesting

field reference --class ~.domain.PLCTesting --fieldName Device --type
~.domain.Device

field reference --class ~.domain.PLCTesting --fieldName ConfigurationIO
--type ~.domain.ConfigurationIO

field reference --class ~.domain.PLCTesting --fieldName
ApplicationRunning --type ~.domain.ApplicationRunning

field set --element ~.domain.ConnectionInfo --fieldName ConnectionInfo -
-class ~.domain.PLCTesting --cardinality MANY_TO_MANY

field set --element ~.domain.Vulnerabilities --fieldName Vulnerability -
-class ~.domain.PLCTesting --cardinality MANY_TO_MANY

field reference --class ~.domain.Vulnerabilities --fieldName Attack --
type ~.domain.AttackPattern

field reference --class ~.domain.Vulnerabilities --fieldName
ScanningTool --type ~.domain.ScanningTool

field set --element ~.domain.MonitoringSystem --fieldName
MonitoringSystem --class ~.domain.Vulnerabilities --cardinality
MANY_TO_MANY

field set --element ~.domain.PLCTesting --fieldName PlcTesting --class
~.domain.Vulnerabilities --cardinality MANY_TO_MANY

field reference --class ~.domain.ScanningTool --fieldName Scanner --type
~.domain.Scanner
perform

	Abstract
	Introduction
	Databases Overview
	Database Design Process
	Analysis phase
	Database Tables
	Design phase
	Implementation Phase
	Installing Roo
	Spring Roo starting the project
	Creating Entities and Fields
	Using the IDE
	Creating the web tier and loading the web server
	Conclusion
	Bibliography
	Appendix: Database application code

