

A study on compiler
flags and performance
events

CERN openlab Technical Report
Mirela-Madalina Botezatu
mirela-madalina.botezatu@cern.ch
Supervisor: Andrzej Nowak
01.09.2012

A study on compiler flags and performance events

1

Table of Contents

1 Introduction .. 2

2 State of the art .. 3

3 Benchmarks ... 4

4 A comparison of compiled binary speed of ICC and GCC ... 5

5 Compiler flag roles and restrictions .. 6

5.1. A study of performance benefits with particular combinations of compiler flags 9

5.1.1 Observations on the CPU intensive subset of benchmarks .. 10

5.1.2 Observations on the I/O intensive subset of benchmarks .. 11

6 A study of the influence of compilation flags on the compilation time ... 14

7 Using machine learning for performance events analysis .. 15

7.1 A study of performance events correlations .. 17

7.2 PCA and varimax rotation ... 20

7.2.1 What are the main performance bottlenecks?... 21

7.2.2 What contributes to CPI increase? ... 22

7.2.3 Identification of the characteristics of a new benchmark .. 24

8 A study on how performance events implicate the choice of compiler flags 25

9 Conclusions ... 29

10 References ... 30

A study on compiler flags and performance events

2

1 Introduction

CERN openlab is a partnership between CERN and leading IT companies. CERN gets access to

unreleased, cutting edge technology and, on the other side, the partners get access to CERN’s expertise

and a demanding test environment for their products. We collaborate with Intel in the Platform

Competence Centre of CERN openlab. The work of the PCC addresses issues such as power and

computing efficiency, benchmarking, optimization, multi-threading and multi-core scalability or high-

speed networking.

Compilers are the bridge between software and hardware, and the role they play in satisfying real-time

and performance constraints is crucial. The processor architecture controls the ability of the compiler to

efficiently generate code that can ultimately bring speed optimization. In order to have a good

comprehension on how the software maps onto the running architecture, performance events can be

used as excellent indicators.

Accuracy, reproducibility and speed in software are often conflicting objectives. Enabling the

appropriate compiler switches can be very helpful in controlling these tradeoffs. The compiler will

attempt to optimize the binary and/or the size of the code at the cost of compilation time and possibly

the ability to debug the program. But which compiler and further, which compiler flags to choose among

the hundreds provided? In the first part of the study we show results from a synthetic set of benchmarks

from two major x86 compilers.

Can we quickly identify the performance bottlenecks which exist in the code? Which compiler flags are

likely to alleviate which performance issue, and at what cost? We try to answer some of these questions

through a set of statistical techniques. We filter out a subset of flags (of the Intel 13.0.1 compiler) that

are likely to bring performance gains, but unlike in other studies, we don’t compromise the accuracy and

reproducibility of the results. We select a set of benchmarks to evaluate code runs with different

combinations of flags enabled.

We use performance events to identify the performance bottlenecks present in those benchmarks and

eventually we attempt to associate them with the compiler flags that are likely to alleviate these issues.

A study on compiler flags and performance events

3

2 State of the art

In [1], Cavazos et al. used machine learning to build a model that can automatically choose adequate
compiler optimization flags for a program. For building the model, the authors used logistic regression1
which is not a computationally expensive technique. We found it very interesting to explore how this
idea maps onto modern technology and software capabilities. We used the latest compiler release from
Intel (ICC 13.0.0), classic performance events and also events that were not supported before. However
we involve a different machine learning technique. Instead of building a logistic regression model per
flag we use random forests2, so that the combined effect of different enabled flags is also considered.

ACOVEA3 is a tool developed by Scott Robert Ladd which implements genetic algorithms to select the
best compiler flags to build singular algorithms using GCC. In [2] several explanatory techniques are
applied on performance events to answer questions such as which performance events have similar
information or whether they provide the same information across different parallel tasks or which of
them help differentiate between tasks. In our study we also involve explanatory techniques like the
scatter matrix of performance events, or Principal Component Analysis.

In [3] S. Bird et.al illustrate the achievements in terms of performance brought by the new features like
macro-fusion and micro-fusion in Intel’s Woodcrest processor. Looking at branch mispredictions per KI,4
L1D cache misses per KI and L2 misses per KI they see that L2 misses have the highest impact on
performance (0.96 correlation coefficient). They compare Woodcrest with some predecessors with
similar architectural features. They correlated the increase in performance with the percentage of fused
operations and they noticed a high correlation between the increase in performance of Woodcrest over
Yonah or a NetBurst architecture based processor (Intel Pentium Extreme Edition 965) and the number
of macro-fusions for integer benchmarks.

Data mining has also been involved in estimating the power consumption by looking at performance
events. Stockman et al. [4] used neural networks while Contreras et al. [5] used a linear model for this
purpose.

In [6] Wucherl Yoo et al. use the notion of performance pathologies for performance bottlenecks that
appear during the execution of a program. They implemented decision trees for performance
pathologies identification. Another interesting data mining study applied on performance events is [7],
where it is presented how performance counters can be used for fault localization by monitoring the
number of instructions retired at function level.

1
 Logistic regression is a type of regression analysis that is used to predict the outcome of a dichotomous

dependent variable
2
 Random forests is an ensemble classifier that consists of many decision trees and predicts the class of a

categorical variable
3
 Analysis of Compiler Options via Evolutionary Algorithms

4
 KI = A thousand of instructions

A study on compiler flags and performance events

4

3 Benchmarks

In order to perform our analysis we chose a set of 37 benchmarks, some of which stress the CPU and

others the I/O subsystem. There are 4 sets, and in addition we also benchmarked a Fast Fourier

Transform implementation5.

1. High Energy Physics (HEP) benchmarks – a set of benchmarks developed in openlab, which

consists of representative snippets for evaluating the code from CLHEP6, GEANT47, ROOT8 and

STL9.

2. Root benchmarks10 - official benchmarks for stressing the functionality of ROOT.

3. Gooda11 I/O intensive benchmarks.

4. Adobe C++ Benchmarks - a set of C++ benchmarks typically used to quantify how well top

compiler vendors implement various C++ operations and language features.

When analyzing the influence of compiler flags one typically looks at the runtime performance of the

code. It may be interesting, but not critical, to look at compile time as well (as usually the code is

compiled once, run many times). To analyze the former - the runtime performance - we use the

benchmarks mentioned above and for the latter – compilation time - we use HEPSPEC06.

In addition to a well established set of benchmarks, we used the Adobe C++ Benchmarks as they tackle

common performance issues encountered in C++ code and represent good optimization challenges for

the compiler. In the following table, we list the names of those benchmarks and a brief description for

each12.

Benchmark Description

functionobjects This test is a demonstration of the performance of function pointers,
functors, and native comparison operators. Some compilers have
difficulty instantiating simple functors.

simple_types_loop_invariant A test to check if the compiler will move loop invariant calculations
out of the loop. Most compilers have room for improvement.

stepanov_vector Usage of pointers to vector iterators and usage of reverse iterators.
This tests the compiler supplied STL implementation in addition to the
compiler itself.

5
The FFT implementation is both I/O intensive and CPU intensive benchmark and it tests the processor’s

performance in converting domain data into frequency domain data. We chose the implementation of Don Cross -
http://groovit.disjunkt.com/analog/time-domain/fft.html
6
 http://proj-clhep.web.cern.ch/proj-clhep/

7
 http://geant4.cern.ch/

8
 http://root.cern.ch/drupal/

9
 http://en.wikipedia.org/wiki/Standard_Template_Library

10
 A list of benchmarks from the ROOT standard distribution kit: http://root.cern.ch/drupal/content/benchmarking

11
 https://code.google.com/p/gooda/

12
 http://www.nersc.gov/users/computational-systems/hopper/performance-and-optimization/compiler-

comparisons/

A study on compiler flags and performance events

5

simple_types_constant_folding A test to check if the compiler will correctly fold constants and simple
constant math for simple types.

loop_unroll Test to check if compilers will correctly unroll loops to hide instruction
latency. Some compilers have problems expanding the templates, and
most compilers have problems correctly unrolling the loops for best
performance.

stepanov_abstraction A value wrapped in a structure or class should not perform worse
than a raw value. Through this test we measure the performance
penalty caused by the use of data abstraction in C++ programs.

Note:
The machine used for studies is the following:

Westmere [Intel(R) Xeon(R) CPU X5650 2713 MHz, 24 cores , 2 sockets, Hyper-Threading on, Cache
size: 12288KB, RAM size: 47 GB]

4 A comparison of compiled binary speed of ICC and GCC

As we want to use tools that help us most in producing fast, optimal code, we compared the

performance of the two most popular x86 compilers– the Intel compiler and the GNU compiler on

Adobe benchmarks. As the figure of merit we used the execution time measured in seconds. We used

only the Adobe benchmarks because the code is written to address directly relevant performance issues

(both in the sense that they are often encountered and that they represent real challenges for compilers

in their attempt at optimizing the code).

The compiler versions used for the analysis are:

 ICC 13.0.1

 GCC 4.6.3

We ran the benchmarks compiled with the two compilers for two optimization levels: O2 and O3.

Note:

The optimization levels O2 and O3 are similar between ICC and GCC, but different in important ways on

the two compilers (for example, ICC allows unsafe floating-point optimizations at –O2 (and –O3) and

GCC doesn’t even at –O3). They are each a “combination” of various internal individual options and the

driver passes those individual options to the compiler. Some examples of differences between the O2

and O3 optimization levels for the two compilers (for the versions mentioned above):

 ICC enables inlining at O2 whereas GCC enables it at O3.

A study on compiler flags and performance events

6

 ICC at O2 optimization level has inlining and other interprocedural optimizations within a
source file, vectorization. Vectorization and most inlining is enabled in GCC only at the O3
optimization level.

 GCC enables "-fstrict-aliasing" (enforces strict aliasing rules) starting from O2 whereas ICC
doesn't enable it even at O3.

 Loop unrolling is enabled starting from O2 with ICC whereas in GCC at O2 there is the flag
“frerun-loop-opt”, which also enables some loop optimizations, but no loop unrolling.

 ICC has optimized math library functions by default.

The results from the runs are presented in the following table:

Benchmark Exec. time
GCC –O2

Exec.
time
ICC –O2

ICC
Gain

Exec. time
GCC –O3

Exec.
time
ICC –O3

ICC
Gain

functionobjects.cpp 245.05 238.60 2% 240.97 240.58 0%

loop_unroll.cpp 383.04 198.63 48% 388.93 167.63 56%

Simple_types_constant_folding.cpp 104.33 155.6 -49% 97.05 155.79 -59%

Simple_types_loop_invariant.cpp 354.92 245.38 30% 333.19 245.13 26%

Stepanov_abstraction.cpp 248.99 213.49 14% 245.77 234.73 4%

Stepanov_vector.cpp 301.38 214.303 28% 303.06 228.004 24%

 Adobe benchmarks - execution time measured in seconds

We compare the execution time obtained for these runs and we observe that ICC outperforms GCC in 5

out of the 6 benchmarks, the speedup obtained by compiling with ICC ranging from 1% to 56%.

However, we see that GCC appears to deal better with folding constant mathem atical expressions.

5 Compiler flag roles and restrictions

As mentioned before, the selection of the proper set of compiler optimization flags is subject to a

judicious choice. It is very costly in terms of time to analyze all the flags in all possible combinations. In

order to ease this process, we selected optimization flags that target different optimization paths, that

can strongly impact performance, and whose effects can be identified through the performance events.

Note: +EXPAND

 We did not include those flags that disregard strict standards compliance13.

 We did not include flags that are enabled by default.

 We did not include “tune for this architecture” switches

Based on the documentation provided by Intel [9] and the advice received from Intel experts, we

selected the following options:

13

However, we did not use “–fp-model strict” for ICC to get standard compliant floating-point behavior, and by
default “fp-model fast=1” is enabled, which enables more aggressive optimizations on floating=point calculations

A study on compiler flags and performance events

7

Flag Description

-O3 O2 optimizations plus more aggressive optimizations for maximum
speed like:

 Loop unrolling and instruction scheduling

 Code replication to eliminate branches

 Padding the size of power two arrays to allow more
efficient cache use

-fno-inline-functions It is the opposite of finline-functions which is enabled in O2 and O3

-inline-forceinline Specifies that an inline routine should be inlined whenever the
compiler can do so. Because C++ member functions whose
definitions are included in the class declaration are considered
inlinefunctions by default, using this option will also make
these member functions "forceinline" functions.
The compiler will not inline if that creates problems: for example, a
recursive function is inlined into itself only once.

-nolib-inline Disables inline expansion of standard library or intrinsic functions.
(It prevents the unexpected results that can arise from inline
expansion of these functions, like floating-point computations
inconsistency.)

-unroll-aggressive This option enables aggressive, complete unrolling for loops with
small constant trip counts.

-funroll-all-loops Unroll all loops even if the number of iterations is uncertain
when the loop is entered.

-falign-functions A align functions on an optimal byte boundary.

-ansi-alias Assume that the program adheres to ISO C Standard aliasing rules.
This allows the compiler to optimize more aggressively. If the code
does not adhere to these rules then it can cause the compiler to
generate incorrect code.
Note:
 Our benchmarks conform to these rules

-opt-streaming-stores always Enables generation of streaming stores for optimization. The
compiler optimizes under the assumption that the application is
memory bound.

-opt-class-analysis Determines whether C++ class hierarchy information is used to
analyze and resolve C++ virtual function calls at compile time.
The option is turned on by default with –ip or –ipo compiler
options, enabling improved C++ optimization.

-opt-ra-region-strategy=routine The register allocator creates a single region for each routine.

-opt-ra-region-strategy=block The register allocator partitions each routine into one region per
basic block.

-ip Enables additional interprocedural optimizations for single-file
compilations.

-ipo Enables interprocedural optimizations between files. When this
flag is enabled, the compiler performs inline function expansion
for calls to functions defined in separate files.

-opt-prefetch=4 Enables prefetch insertion optimization. We test with opt-
prefetch=4 so that it performs more aggressive prefetching.

A study on compiler flags and performance events

8

-opt-block-factor=2 Loop-blocking factor=2. Loop blocking optimization is part of the
High Level Optimizations in Intel compiler. It is available when the
optimization level is higher or equal with –O3.

-opt-block-factor=16 Loop blocking factor = 16.

We decided to exclude the compiler optimization flags that are slightly risky14, like no-prec-div, no-prec-

sqrt, -fast-transcedentals. They might introduce inaccuracy and HEP code is sensitive to this issue.

To illustrate the performance impact of unsafe optimizations, we run the “simple types constant

folding” benchmark (from Adobe C++ Benchmarks), we extract two of the tested cases (“float constant

divide” and “float multiple constant divides”) and compare the execution time for the code compiled

with –O2 with the execution time for divisions for the code compiled with –fast.

Operation Execution Time (seconds)
Code compiled with –O2

Execution Time (seconds)
Code compiled with –fast

Speedup

Float constant divide 62.51 39.55 1.58

Float multiple constant divides 184.6 39.42 4.68
Code compiled with -O2 vs code compiled with -fast

We see that divide operations can be executed 4.5 times faster when “-fast” is switched on. This flag

maximizes the speed across the entire program. It enables a number of “unsafe” optimizations like -

ipo, -O3, -no-prec-div, -static.

Another optimization flag that has potential of being helpful but was not considered, because it is risky,

is “-fno-alias“ and its equivalent for functions only ”- fno-fnalias” (for functions), which assumes less

strict rules. Aliasing implies writing to a location in memory with more than one pointer to that address.

By strict aliasing rules we denote rules that specify that memory references are not allowed to the same

memory locations via separate pointers. If the piece of code does not conform to the alias rule in effect,

the compiler might generate optimizations that modify the intended semantics of the program. This in

turn can lead to incorrect results or runtime failures. We leave the decision of enabling strict aliasing

rules to be made by the programmer.

One has to keep in mind the fact that possible aliasing can sometimes prevent the compiler from

pipelining the instructions, or from benefiting from the parallelism capabilities in the processor.

An alternative for dealing with aliasing is “opt-multi-version-aggressive” which forces the compiler to

use aggressive multi-versioning to check for pointer aliasing and scalar replacement. It is well suited for

situations where one knows one can’t use -ansi-alias but not every part of the code violates the alias

rules. This option is “assumption-free”, as different versions of the loop may be generated based on run

time dependence testing, alignment and checking for short/long trip counts. When enabled, this option

14

 Note that “-fp-model fast=1” which is enabled by default with ICC, may also alter the accuracy of floating-point
computations

A study on compiler flags and performance events

9

will trigger more versioning at the expense of creating more overhead to check for pointer aliasing

and scalar replacement.

An eye should be kept on feedback-driven optimization, enabled by the “-pgo” flag which was not

included in the study since it does not fit our methodology. It is a powerful technique that tries to

optimize the most heavily executed paths in the program. It is deterministic, as it does not use actual

execution time to tune the optimization. It is input dependent - the input for the run, based on which

the default heuristics are tuned for various optimizations, must be representative.

5.1. A study of performance benefits with particular combinations of compiler

flags

Since some flags interact with others, we analyze both the effects of a flag when used individually and in

combination with other compatible flags

We split the benchmarks in two subsets: CPU intensive and I/O intensive. 27 benchmarks fall into the

former category and 10 into the latter.

We run the benchmarks with one flag switched on and the rest off, then with two flags switched on and

the rest off (all the pairs), and then with three flags switched on and the rest off. These combinations

are subject to some predefined constraints, e.g. we don’t combine flags that are enabled automatically

by other flags, we don’t combine flags when one can overwrite the effect of the other. As a result we

have 786 possible configurations to analyze.

In the following we will present performance results obtained after running the benchmarks with the

different combinations. We assume a performance gain if the code runs faster than the code compiled

with –O2. We analyze all the runs where the execution time was at least 1% faster than the execution

time measured for the code compiler with “–O2”. For our 37 benchmarks run with the previously

mentioned combinations of flags, we have 4421 cases of at least 1% increase in performance out of

29082 cases. We check which flags appeared most often enabled for the cases where we have an

increase in performance of at least 1%. We also check which flags appeared most often as bringing

performance degradation. In the following table we list “counts” per flag here “counts” represent the

number of times there was an increase in performance and the flag was enabled.

Compiler flag Counts Compiler flag Counts

O3 963 Opt-streaming-stores-always 694

Ipo 951 Ansi-alias 686

Opt-ra-region-strategy=routine 821 Opt-prefetch=4 674

Ip 761 Faling-functions 657

Opt-ra-region-strategy=block 760 Unroll-aggressive 652

Funroll-all-loops 753 fno-inline-functions 628

Nolib-inline 740 Opt-block-factor=16 616

Inline-forceinline 738 Opt-block-factor=2 608

Opt-class-analysis 700
Flags bringing a performance gain sorted by counts

A study on compiler flags and performance events

10

5.1.1 Observations on the CPU intensive subset of benchmarks

For the CPU intensive subset of benchmarks, in 17 out of 27 benchmarks we have an increase in

performance of at least 1% for at least one combination of compiler flags (including the “one flag only”

case).

Combinations of 1 compiler flag

The flags enumerated below are those that appear in the largest number of benchmarks with a

performance gain with respect to the execution time of the code compiled with “–O2”.

Flag Frequency

Opt-ra-region-strategy=routine 8/17

O3 7/17

Opt-class-analysis 7/17

Combinations of 2 compiler flags

The pairs enumerated below are those combinations of two flags that appear in the largest number of

benchmarks with a performance gain with respect to the execution time of the code compiled with “–

O2”.

 Combination of two flags Frequency

Opt-ra-region-strategy=routine ipo 10/17

Opt-ra-region-strategy=routine ip 9/17

Opt-ra-region-strategy=routine Opt-block-factor=2 8/17

ipo Opt-class-analysis 8/17

O3 Opt-ra-region-strategy=routine 8/17

Opt-ra-region-strategy=routine Inline-forceinline 8/17

Combinations of 3 compiler flags

The triples enumerated bellow are those combinations of three flags that appear in the largest number

of benchmarks with a performance gain.

 Combination of three flags Frequency

Opt-ra-region-strategy=routine Opt-block-factor=2 Ipo 10/17

Opt-ra-region-strategy=routine Opt-prefetch=4 ipo 9/17

Opt-ra-region-strategy=routine ip Ipo 9/17

Opt-ra-region-strategy=routine Inline-forceinline Ipo 9/17

Opt-ra-region-strategy=routine O3 Ip 9/17

Top speed in the CPU intensive benchmark subset:

For each benchmark we select the flags combination with best speedup. Then we see which flags appear

most often across all benchmarks. (the speedups range from 1.008 to 1.87) . We notice it is more

probable to attain top speed if we enable ip, forced inlining, and we choose suitable register allocation.

One should also consider the benefits of unrolling, blocking and prefetching.

A study on compiler flags and performance events

11

Flag Frequency

Inline-forceinline 9

Opt-ra-region-strategy=block 7

Ip 7

Ipo 7

Opt-prefetch=4 7

Opt-block-factor=2 6

Falign-functions 6

Unroll-aggressive 6

Opt-ra-region-strategy=routine 5

Ansi-alias 5

Opt-class-analysis 4

O3 3
Flags bringing top speed in the CPU intensive benchmark subset, sorted by frequency (the nr of times it appeared
across the top combinations of flags - those with best speedup per benchmark-)

5.1.2 Observations on the I/O intensive subset of benchmarks

For the CPU intensive subset of benchmarks in 5 out of 10 benchmarks we have an increase in

performance of at least 1% for at least one combination of the compiler flags (including the “one flag

only” case).

Combinations of 1 compiler flag:

The flags enumerated bellow are those that appear in the largest number of benchmarks with a

performance gain with respect to the execution time of the code compiled with “–O2”.

Flag Frequency

O3 4/5

Opt-prefetch=4 3/5

Ansi-alias 3/5

Ip 3/5

Combinations of 2 compiler flags:

The pairs enumerated below are those combinations of 2 flags that appear in the largest number of

benchmarks with a performance gain with respect to the execution time of the code compiled with “-

O2”.

 Combination of two flags Frequency

Opt-prefetch=4 Ipo 4/5

Ip Unroll-aggressive 3/5

O3 opt-block-factor=16 3/5

O3 Opt-class-analysis 3/5

O3 Ansi-alias 3/5

A study on compiler flags and performance events

12

Combinations of 3 compiler flags:

The triples enumerated bellow are those combinations of three flags that appear in the largest number

of benchmarks with a performance gain. The performance gain is considered relatively to the execution

time of the code compiled with “–O2”.

 Combination of three flags Frequency

Ansi-alias Ipo Opt-streaming-stores always 4/5

O3 Opt-prefetch=4 Ipo 4/5

Fno-inline-functions Ipo Ansi-alias 3/5

ansi-alias Ip funroll-all-loops 3/5

Top speed in the I/O intensive subset:

For each benchmark we select the flags combination with best speedup. Then we see which flags appear

most often across all benchmarks. (speedups range from 1.0001 to 1.31). We notice one is likely to

attain top speed in I/O benchmarks if aggressive prefetching is enabled.

Flag Frequency

Opt-prefetch=4 5

Unroll-aggressive 3

Funroll-all-loops 3

Opt-ra-region-strategy=block 2

Ip 2

Ipo 2

O3 2

Opt-block-factor=2 2

Opt-block-factor=16 2
Flags bringing top speed in the I/O intensive benchmark subset, sorted by frequency (the nr of times it appeared
across the top combinations of flags - those with best speedup per benchmark-)

Observations:

The body of a loop tends to be executed frequently. It is very important to apply beneficial

transformations and to apply appropriate register allocation technique, as this typically greatly

influences the number of memory accesses. From the data mentioned above we can see that register

allocation interferes heavily with loop unrolling and with the blocking factor.

Register allocation is also affected by software prefetching. For our benchmarks this interaction brought

a performance again. However, this might also increase the register pressure and lead to a decrease in

performance, as stated by Shrewsbury and Norris in [10]. The authors identified two main reasons for a

potentially unfavorable interaction. First, there are additional instructions inserted in order to calculate

the address to fetch. These instructions will use some temporaries that should be stored in registers and

this increases the competition for registers. The second reason is represented by the loop

transformations needed for scheduling the prefetched instructions. They are likely to increase code size

and complicate the interference graph based on which registers are assigned to temporary variables.

A study on compiler flags and performance events

13

Performance decrease

We see that the option “opt-streaming-stores=always” and “nolib-inline” do not seem to have a positive

performance impact on our benchmarks…

We analyze all the runs where performance degradation is noticed. We label a configuration as bringing

a performance decrease, if the execution time for the code compiled using that configuration was at

least 1% longer than the execution time measured for the code compiled with “–O2”. For our 37

benchmarks ran with the previously mentioned combinations of flags, we have 4515 cases of a decrease

in performance out of 29082 cases, approximately 15% of the total.

If we check which flags appeared most often enabled for these cases we have the following results:

Flag Frequency Flag Frequency

Opt-streaming-stores-always 1071 Ansi-alias 686

Nolib-inline 1004 Opt-prefetch=4 675

O3 838 Funroll-all-loops 673

Ipo 822 Inline-forceinline 665

Opt-ra-region-strategy=block 818 Unroll-aggressive 656

fno-inline-functions 773 Opt-class-analysis 647

Opt-ra-region-strategy=routine 757 Opt-block-factor=16 590

Ip 710 Opt-block-factor=2 586

Falign-functions 688
Compiler flags that caused performance degradation

From the table above we can see that “nolib-inline”, “O3” and “opt-streaming-stores-always” appear

quite frequently in the combinations of flags that have a negative impact on the performance.

The flags that, alone, lead to approx 15% decrease in performance:

 opt-streaming-stores always (“stepanov_vector”)

 nolib-inline (“testSTLlist”, “testSTLvect”)

The combinations of 2 that lead to at least 20% decrease in performance in our benchmarks:

 unroll-aggressive + opt-streaming-stores always (“testTGeoBBox”,”testTRandom”)

 nolib-inline + opt-block-factor=2 (“testTGeoBBox”, “testSTLvect”)

 nolib-inline + opt-ra-region-strategy=block (“testSTLlist”, “testSTLvect”)

 opt-streaming-stores-always + nolib-inline (“testSTLlist”, “testSTLvect”)

The combinations of 3 that lead to at least 30% decrease in performance in our benchmarks:

 nolib-inline + opt-streaming-stores always + opt-prefetch=4 (“testTrandom”, “testSTLvect”)

 nolib-inline + opt-streaming-stores always + ip (“testTrandom”, “testSTLvect”)

 inline-forceinline+nolib-inline+unroll-aggressive (“testTrandom”, “testSTLvect”)

 fno-inline-functions + nolib-inline + ansi-alias (“testSTLlist”, “testSTLvect”)

A study on compiler flags and performance events

14

6 A study of the influence of compilation flags on the compilation

time

Real world applications can consist of millions of lines of code in hundreds of source files, which can take

a considerable amount of time to build. Gains in execution time achieved by enabling different compiler

flags are often at the expense of compilation time. That’s why it is important to analyze the compile-

time cost of the flags which improve performance. We will do this by measuring the compile time with

each flag from our pool on a representative benchmark – HEPSPEC06.

Using the Intel compiler involves going through three main stages:

1. The compiler is loaded

2. The compiler tries to find a license

3. The compiler compiles the code

The time spent by the compiler trying to find a license depends on various factors like whether one is

using a local license or a license server or whether there were a lot of “old” licenses around. It is

important how many licenses it has to look through before finding a valid one. Having to “check out” a

license from a multi-unit license takes time.

In order to diminish the importance of the time spent in phases 1 and 2, we require a workload that

spends much more time in phase 3 than in the other ones. This way, we can compare more accurately

the time spent compiling with one flag versus another. Therefore we opted for HEPSPEC06, a complex

set of test applications intended for measuring CPU performance. HEPSPEC06 is based on the “all_cpp”

benchmark subset of the widely used, industry standard SPEC CPU2006 benchmark suite.

We noted the compile time15 for HEPSPEC06 suite using each flag from the collection, and the results

are displayed in the following graph:

15

 Time – total time not just the time spent in step 3.

A study on compiler flags and performance events

15

 Figure 1: Compilation time relative to -O2 on HEPSPEC06

From the figure above we can see that the “inline-forceinline” flag doubles the time spent in building the

code for these tests. The intermediate representation of the code of a function is copied in each place

where it is called.

Observations:

C++ inlining is performed at compile time. This implies that if one modifies the code of the inlined

function one must recompile all the code using it to ensure that all the changes are propagated where

needed. For this flag, “inline-forceinline”, particular attention is needed for the question if the benefits

in execution pay off the cost in compile time.

”Opt-ra-region-strategy=block” also brings a 50% increase in compilation time. Register allocation is a

costly operation and the time spent in register allocation increases as the number of regions grows.

Accordingly, opt-ra-region-strategy=block is the most costly in compile time, whereas at the opposite

end we have opt-ra-region-strategy=routine.

Also, we can see that “-ip” brings a little increase in the build time while in the presence of “-ipo” we can

observe a decrease in the compilation time.

7 Using machine learning for performance events analysis

The Performance Monitoring Unit consists of a set of registers that are used in counting micro-

architectural events from various hardware sources (CPU, memory buffers, pipeline, caches, bus, etc).

Collecting and analysing the events is very helpful for investigating the two main causes of poor

A study on compiler flags and performance events

16

performance: suboptimal code generation and sub optimal interaction of the code and the micro-

architecture.

Performance events are hardware specific data that are used to analyze the interaction of code with

microarchitecture specific components. Therefore, the capabilities of the tools used for collecting

performance data depend on the features of the CPU. Not all processors come with the same set of

performance events, they are specified by the processor manufacturer. Performance events can be

classified into the following categories:

 General processor characterization
o General metrics
o Microarchitectural efficiency and resource utilization

 On-core memory access

 Off-core memory access

For this study we use the same benchmarks we used in the previous analysis.

In order to collect the counts for the performance events, we used perf16 which is a tool that brings to

the user the various abstractions related to hardware specific capabilities. One can collect counters to

monitor the entire system or just on a per process or per thread basis, either in counting mode or by

sampling events. We use perf in counting mode, (aka ”perf stat”) that collects event counts

during process execution. We also use libpfm17, a library that provides a mapping between performance

event names and their encodings and also is aware of the constraints between them.

The performance events selected for the analysis are the following:

PERFORMANCE EVENT DESCRIPTION
UNHALTED_CORE_CYCLES Clock cycles when not halted
INSTRUCTION_RETIRED Number of instructions retired
UOPS_RETIRED:ANY Number of micro-ops retired
UOPS_ISSUED:ANY Number of micro-ops issued
ARITH:CYCLES_DIV_BUSY Cycles that either the divide or sqrt execu-

tion unit was occupied
ARITH:DIV Divide operations executed
RESOURCE_STALLS:ANY Resource related stall cycles
BR_INST_EXEC:ANY Number of branch instructions executed
BR_MISP_RETIRED:ALL_BRANCHES Number of mispredicted branches retired
BACLEAR:CLEAR Number of times the front end is re-steered, mainly when

the Branch Prediction Unit cannot provide a correct
prediction.

L2_RQSTS :IFETCH:HIT Code requests that hit the L2
L2_RQSTS_IFETCH:MISS Code requests that miss the L2
ITLB_MISSES ITLB misses

16

 https://perf.wiki.kernel.org/index.php/Main_Page
17

 http://www.hpl.hp.com/research/linux/perfmon/libpfm.php

A study on compiler flags and performance events

17

DTLB_LOAD_MISSES DTLB misses
MEM_LOAD_RETIRED:L1D HIT Retired loads that hit the L1 data cache
MEM_LOAD_RETIRED:L2 HIT Retired loads that hit the L2 cache
MEM_LOAD_RETIRED:LLC_UNSHARED_HIT Retired loads that hit valid versions in the LLC
MEM_LOAD_RETIRED:OTHER_CORE L2_HIT_HITM Memory instructions retired LL3 Cache hit and HITM in

sibling core
MEM_UNCORE_RETIRED:LOCAL_HITM Load instructions retired that HIT modified data in sibling

core
MEM_UNCORE_RETIRED:LOCAL
_DRAM_AND_REMOTE_CACHE_HIT

Load instructions retired local dram and remote cache HIT
data sources

MEM_UNCORE_RETIRED:REMOTE_DRAM Load instructions retired remote DRAM and
remote home-remote cache HITM

MEM_UNCORE_RETIRED:REMOTE_HITM Retired loads that hit remote socket in modified state
MEM_UNCORE RETIRED:OTHER_LLC_MISS Retired loads that missed the LLC of other cores

Note: Performance events change from processor generation to generation and they are not publicly

validated (there is a degree of uncertainty with respect to what some of them measure).

In the following sections we will explore the data through a set of descriptive statistics techniques.

7.1 A study of performance events correlations

The scatter-plot is an exploratory data visualization technique. More precisely it is a graph where two

sets of data are plotted against each other to see if a connection or correlation can be established

between them. The scatter-plot matrix is used when we deal with more sets of data – more predictor

variables, and we want to see all the pair-wise relations at once, by displaying all the (

) scatter plots in

a matrix.

The scatter matrix can give us insight with respect to the following issues:

1. The correlation between performance events and if there is a correlation, its direction (whether

they are positively or negatively correlated).

2. Detection of benchmarks with unusual (either too large or either too small) ratios for some

performance events.

Examining the correlations between performance events can also be useful for architectural analysis and

comparison. In our study we will not discuss this aspect, since we collected counts for the performance

events from only a single type of machine. On Figure 2, we show the scatter-plot matrix of performance

events collected from running the benchmarks compiled with “-O2” optimization level. On the diagonal

we have the names of the performance events, the subdiagonal boxes have the scatter plots together

with the best linear fit lines, and on the superdiagonal boxes we have Pearson’s correlation coefficient18.

18

 Pearson’s correlation coefficient is a measure of the correlation (linear dependence) between two variables, and
it can take values between -1 and 1 inclusive.

A study on compiler flags and performance events

18

We show only the events with a very small coefficient of variation (Table 2). We wanted to see if we

have run to run counting variations for the values collected for our performance events. As they will be

the explanatory variables for our analysis it is essential to know they can be relied upon. We noticed

that two performance events present large run to run variations, and consequently we decided to

remove them from the analysis. The approach for seeing run to run variations of events is the following:

We ran the entire collection of benchmarks three times, we divided the values from one run by the

values obtained from the other run and then we computed the coefficient of variation (standard

deviation divided by the mean). Those performance events with their coefficient of variation larger than

0.1 were not included in the creation of the scatter-plot matrix19

Event Coefficient of variation

UNHALTED_CORE_CYCLES 0.021

INSTRUCTION_RETIRED 0.004

UOPS_RETIRED:ANY 0.004

UOPS_ISSUED:ANY 0.005

ARITH:CYCLES_DIV_BUSY 0.09

ARITH:DIV 0.08

BR_INST_EXEC:ANY 0.006

BR_MISP_RETIRED:ALL_BRANCHES 0.01

BACLEAR:CLEAR 0.09

L2_RQSTS :IFETCH:HIT 0.081

ITLB_MISSES 0.09

MEM_LOAD_RETIRED:L1D_HIT 0.006

MEM_LOAD_RETIRED:LLC_UNSHARED_HIT 0.04
Performance events with a small coefficient of variation

The correlation between performance events:

Figure 2 demonstrates that the more micro-ops issued are counted for a benchmark the more micro-ops

and instructions retired which is rather expected. The number of cycles spent increases with memory

events (positive correlation), which again is expected. More importantly, the greater the number of

mispredicted branches, the more ITLB misses and hence the more cycles spent by that code to execute

(this can be explained by branching causing ITLB misses). It is very improbable that one will miss in the

ITLB if one just moves forward from one instruction to another – as modern processors do a lot of

instruction prefetching. But when one branches one goes to a new address that is out of the sequence

and if this instruction has not been executed recently, then most likely it will not be found in the ITLB,

hence it has to be retranslated.

We notice very high correlations between UOPS_RETIRED.ANY and MEM LOAD RETIRED:L1D HIT (0.91)

and between ITLB_MISSES and BACLEAR.CLEAR (0.9). A high value for BACLEAR.CLEAR usually indicates

that the code has many branches. In turn, ITLB misses can result from correct and incorrect branch

prediction.

19

 Those events were mostly costly memory events

A study on compiler flags and performance events

19

Figure 2 - Scatter-plot matrix

A study on compiler flags and performance events

20

Detection of benchmarks with excessive ratios for some performance events.

If we look closer at the scatter plots we see there are benchmarks that have much larger or much

smaller values for the ratios of some performance events. These benchmarks are worth further

investigation. For example we discover that for “stressFit” the ratio BACLEAR.CLEAR /

BR_MISP_RETIRED_ALL_BRANCHES or BACLEAR.CLEAR / INSTRUCTIONS.RETIRED is two orders of

magnitude higher than the average. This creates a case for a profile based analysis.

 Figure 3 - Scatter-plot matrix zoomed for two events

Similarly, we observe “TestRanluxEngine” (random number generator, many conditional branches) has a

very small value for the ratio UOPS_RETIRED / UOPS_ISSUED, approx 0.4 compared to the average 0.9 –

1.1. “TestTGeoArb8” has a very small value for the ratio ARITH_CYCLES_DIV_BUSY / ARITH_DIV, so for

the same number of divide operations, fewer cycles are spent by the divide execution unit.

7.2 PCA and varimax rotation

Principal Component Analysis is a technique for dimension reduction, data visualization and

compression, latent concept discovery, and preprocessing data in general. We use it in conjunction with

varimax rotation which maximizes the sum of the variances of the squared factor loadings. Factor

loadings are the correlation coefficients between our data and the factors, and the factors in turn are

the unobserved variables (the eigenvectors corresponding to the largest eigenvalues) resulted from the

Singular Value Decomposition of our matrix. We reduce the dimensionality of our data, we extract these

principal factors (principal components) and we map the data to this lower dimensional space. This way

in the end we can easier interpret the results from PCA as we will have each variable associated to no

more than one factor.

We will use PCA to try to answer the following questions:

 What are the main performance bottlenecks?

A study on compiler flags and performance events

21

 What contributes to CPI20 increase?

 Can we identify the characteristics of a new benchmark?

7.2.1 What are the main performance bottlenecks?

To answer this question we have to answer the following direct questions: how many factors do we

extract? What are the factor loadings?

To choose the number of factors to interpret, we can look at the eigenvalues. Each axis has

an eigenvalue associated with it, and they are ordered from the highest to the lowest. These values of

the eigenvalues are related to the amount of variation explained by the axis. If we notice from the plot

that some points tend to level out, this means that we can ignore the components associated to those

eigenvalues as those eigenvalues are very close to 0, hence very little of the variance is explained by

their associated factors. The elbow criterion21 helps us choose the number of factors. We look at the

plot (Figure 4), and we can say two factors should suffice, however if we interpret the loadings on three

factors we have meaningful results with respect to the main performance issues.

 Figure 4: Plot of the eigenvalues

In the following table we show the correlation coefficient between the factors and the performance

events (the factor loadings):

PERFORMANCE EVENT Factor 1 Factor 2 Factor 3

UNHALTED CORE CYCLES -0.812 0.414

INSTRUCTION RETIRED -0.819 -0.454

UOPS RETIRED:ANY -0.724 -0.610 0.199

UOPS ISSUED:ANY -0.833 -0.495 0.132

ARITH:CYCLES DIV BUSY -0.169 0.936

ARITH:DIV -0.177 0.929

RESOURCE STALLS:ANY 0.395 0.804

BR INST EXEC:ANY -0.884 -0.199 -0.179

BR MISP RETIRED:ALL BRANCHES -0.881 -0.267

BACLEAR:CLEAR -0.491

L2 RQSTS :IFETCH:HIT -0.423 -0.416 -0.634

L2 RQSTS IFETCH:MISS -0.869 0.231

20

 Cycles per Instructions Retired
21

 http://www.enotes.com/topic/Determining_the_number_of_clusters_in_a_data_set#The_Elbow_Method

A study on compiler flags and performance events

22

ITLB MISSES -0.337

DTLB LOAD MISSES 0.218 0.703 -0.185

MEM LOAD RETIRED:L1D HIT -0.131 -0.676

MEM LOAD RETIRED:L2 HIT -0.457 0.805

MEM LOAD RETIRED:LLC UNSHARED HIT -0.138 0.731 0.574

MEM LOAD RETIRED:OTHER CORE L2_HIT HITM -0.164 -0.294 -0.213

MEM UNCORE RETIRED:LOCAL HITM -0.124 -0.282 -0.207

MEM UNCORE RETIRED:LOCAL DRAM AND REMOTE CACHE HIT 0.914

MEM UNCORE RETIRED:REMOTE DRAM 0.372 -0.334 -0.172

MEM UNCORE RETIRED:REMOTE HITM -.0282 -0.194

MEM UNCORE RETIRED:OTHER LLC MISS 0.876
PCA Factor loadings

From the factor loadings we can conclude there are 3 main performance bottlenecks in the benchmarks

tested: Branches, Low level memory access, and arithmetical divisions.

7.2.2 What contributes to CPI increase?

We plot the vectors corresponding to our variables (performance events) in a unit circle. Using this

model we plot CPI (blue) to see where it is displaced in the plot. The cosine of the angle between two

vectors is a measure of the correlation between the variables they correspond to.

 Figure 5: Plot of the variables on the first two axis

A study on compiler flags and performance events

23

When we look at the variables factor map on the first two dimensions where branch events and

memory events are well represented (as we noticed by analyzing the factor loadings), we see the CPI is

highly correlated with the costly memory events and with the branch events. Therefore, the larger the

counts for costly memory events in a benchmark or the larger the counts for branches mispredicted, the

larger the CPI for that workload.

Figure 6: Plot of the variables on the 2nd and 3rd axis

If we plot on the second and on the third dimension, where memory events and arithmetical division

events are well represented, we see the angle between the vectors of CPI and ARITH.DIV is small.

Consequently, the more arithmetical division operations in the code, the larger the CPI.

Note:

The performance monitoring unit is able to collect counts for a wide range of performance events. In

our study we have only used a small subset, of the most common ones, hence our conclusions are

limited to the information we can extract from them. The out of order engine is complex and

performance bottlenecks can be encountered in various points on the uops flow. Fortunately we are

provided with a large number of performance events [8] so we can always involve these techniques with

A study on compiler flags and performance events

24

other performance events as explanatory variables to discover new correlations or to assess more

obscure ones.

7.2.3 Identification of the characteristics of a new benchmark

In order to identify the characteristics of a new benchmark we can use the model built with all the

benchmarks except one we leave out and want to see its performance issues.

We use the idea of biplots to show the explanatory variables together with the dependent variables.

For clarity we show them one beside the other but we will interpret them in the same manner as we

would interpret the biplot. We left “malloc_test” aside, we did not include it in building the model – it is

a supplementary dependent variable, and we just display it based on the knowledge we have from the

other benchmarks we used in the model.

Figure 7: Left - plot of the individuals, Right - plot of the variables

By interpreting the vectors of variables we can say that the first component is highly correlated with

costly memory events and the second component is correlated with arithmetical division events.

“Malloc_test” shown on the plot according to its projections, and we see that the model predicts well

that it is a memory intensive benchmark, with high counts for costly memory events.

We also see that the second component opposes “simple_types_loop_invariant” benchmark to the

“stressEntryList” benchmark the former having high counts in arithmetical division events the latter

having very small counts for these.

A study on compiler flags and performance events

25

8 A study on how performance events implicate the choice of

compiler flags
We would now like to establish if we can infer the compiler flags that are likely to bring a performance

gain for a benchmark, by analyzing the performance events of that benchmark collected from its run at

“O2” optimization level. We implement this as a binary classification task.

We collect performance events for each of these tests run without compiler optimization. We also

collect the counts for UNHALTED_CORE_CYCLES for the benchmarks run with compiler optimizations on,

in order to accurately establish if a flag or a combination of flags brought a performance gain or not.

Figure 8: Inference model

We use performance events and compiler optimization flags as explanatory variables. The response is 0

or 1 depending on whether that combination of compiler flags brought a speedup to the benchmark the

performance events belong to. We label with 1 the executions that showed at least 1% performance

gain with respect to O2. We chose 1% because if we hadn’t specified a threshold at all and we labeled as

1 those runs for which less cycles were counted than the execution at O2, the cases where the

difference was very small, would have made it difficult to establish which compiler flags are indeed

beneficial for that benchmark. If the threshold was higher, then we would have had very few

benchmarks for the training set, which is not desirable either. We tried several classification

algorithms and we chose the one that dealt best with the problem of unbalanced class

distribution, and that had a high precision. The formulas for precision and recall22:

The reason behind our aim to obtain a good precision at the expense of a lower recall, is quite intuitive.

We want a good accuracy as a primary condition. But after achieving this, we don’t necessarly want to

have in response all the possible combinations that improve performance, but we rather want to be

sure that we can rely on those configurations that are labeled ”positive” as being good optimizations for

the code.

We tried other classification algorithms among which we can enumerate: Random Forests, Support

Vector Machines (SVM), Logistic Regression. While SVM with tuned parameters lead to a good

22

A study on compiler flags and performance events

26

classification accuracy, we obtained better precision with Random Forests. Consequently we will

expose only this method and the results.

Note:

 After labeling the 37 benchmarks only 22 of them had at least 1% performance gain with the

flags or the combinations of flag we experimented with.

 There are 22 benchmarks in the training set. In total 22 x 786 (configurations) 17292

observations

 There are 15 benchmarks in the test set

 There are 37 explanatory variables, out of which:

o 20 continuous consisting of performance events normalized relative to the total number

of instructions retired so that we can generalize across benchmarks

o 17 categorical the compiler optimization flags

 Unbalanced class distribution23, only 24% of the cases are labeled with 1

Random Forests is a machine learning technique that can be applied for both regression and

classification tasks. Classical methods don’t work or have problems in building a model when the

number of explanatory variables is greater than the number of observations. Random forests can deal

well with such data sets and produce good results. In Random Forests we have a set of classification

trees. We do not use cross-validation as a method of asserting the quality of the model but the out of

bag error estimate (OOB). OOB can give us an unbiased estimation of the error by constructing each tree

with a different bootstrap sample from the data. For a tree from the forest, let’s say Tj, approximately

one third of the observations are left out the sample and used as test set for it. Doing this for each tree,

we in the end have for each observation, about one third of the trees assessing a label for that

observation. The majoritary label is the one that is finally returned for that observation.

For building a Random Forests model we used the “party” package from R, where cforest() function

represents the implementation of the random forests algorithm. There is also an implementation in

”randomForest” package but this one is better it attenuates the bias that random forests have towards

highly correlated variables24.

The parameters we will tune are:

 ntree → the number of trees in the model

 mtry → the number of randomly preselected variables

 mincriterion → the depth of the trees which is eventually left to the default value

23

 For a bi-class classification problem we deal with unbalanced class distribution when we have a larger number of
cases falling in one category than in the other.
24

 C. Strobl, J. Malley, and G. Tutz. An introduction to recursive partitioning: Rational,
application and cjaracteristics of classification and regression trees,bagging and random
forests. Psychological Methods,14(4):323-348, 2009

A study on compiler flags and performance events

27

For ntree=150, mtry=37 (which is equal to the number of candidate predictor variables) we obtained

the most satisfactory results.

The Out of bag cross-classification of true vs. predicted classes gives us the following numbers:

Accuracy Precision

92% 82%

These numbers are reported for the OOB cross classification on the 22 benchmarks used for the model.
We also test the model on the benchmarks for which none of the flags brought a performance gain of at

least 1% relative to the execution time when compiled with –O2. We label as 1 those executions that

have a number of cycles smaller than the number of cycles used after compiling with –O2 (despite the

fact that this difference is very small). For these cases the precision varies largely between 20% and 77%.

This is because that labeling is not accurate and the small differences are not necessary caused by the

compiler optimization flags. Hence, comparing the predicted labels with the true labels (established by

the method mentioned above) is not a good measure for evaluating the algorithm.

We will also try to establish the importance of the predictor variables in building the model, since

Random Forests provide means for establishing variable importance. The technique is the following:

each tree, after it is built, takes the OOB data and they start randomly permuting the values of each

variable. For example for variable V, the values are permuted and then the trees assess the labels of the

OOB with the permuted variable V. We compare these labels with the labels assigned on the OOB set

without permuting values in variable V. Intuitively, if there is no significant difference it means that that

variable has little significance in deciding the label for the cases. So, the trees take the difference of the

correctly labeled observations from the two sets (clean OOB and with variable V’s values permuted) and

they average this on all the trees. This value will be the raw importance score for variable V.

Establishing the importance of the predictor variables is meaningful as these variables can be compared

with respect to their impact in predicting the response or even their causal effect. One interpretation on

variable importance would be how much more useful than random a particular explanatory variable is in

successfully classifying data. Quantification of contributions allows the prioritization of performance

issues and guides workload tuning.

The results for variable importance measurement are shown in the figure bellow:

A study on compiler flags and performance events

28

 Figure 9:Variable importance in the dataset (predictors to the right of the dashed vertical line are significant)

The further a point is situated relative to the red line, the more influential the variable is. This way we

can see that events that count ITLB misses, low level cache hits, arithmetical division or branches

misspredicted are very weighty for building the model. According to the model, the most powerful

compiler optimization flags are O3, ipo, opt-ra-region-strategy=routine and inline-forceinline.

A study on compiler flags and performance events

29

9 Conclusions

Performance analysis is a challenging and appealing task. At times, identifying the key issues can be

straightforward but most often one has to perform exhaustive investigations.

Machine learning is now widely used in a vast number of areas. Through our study we showed how data

mining and machine learning can produce interesting results also in the field of performance tuning.

Performance events are the most accurate information one can get about the execution of the

application (without employing code instrumentation). As the collected numbers are specific to a given

code, we wanted to go to a more abstract level and find patterns that are applicable on a larger scale.

We have built a model that is able to associate performance bottlenecks with the compiler optimization

flags that are likely to attenuate them, yet there is always space for further development. Our random

forests model can receive as input performance events collected from a benchmark compiled at “-O2”

optimization level and output compiler flags or combinations of compiler flags that would be suited for

improving runtime performance.

The projection matrix obtained after performing Principal Component Analysis can also be used to

obtain insightful information for new cases we don’t know anything about. For example we can collect

performance events from a new benchmark and use the PCA model to have some insight about what

the performance issues of that benchmark could be.

In order to make our models more feasible and more stable we could increase the size of our
training data by selecting benchmarks that are more distinctive, addressing specific performance issues.
Machine learning is a far-reaching domain and the more data we feed to the machine learning
algorithms, the clearer their potential is.

A study on compiler flags and performance events

30

10 References

[1] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle, and O. Temam. Rapidly selecting good

compiler optimizations using performance counters. International Symposium on Code Generation and

Optimization, 2007

[2] H. Dong and V. Jeffrey. Scalable analysis techniques for microprocessor performance counter

metrics. Proceedings of the IEEE/ACM SC, 2002.

[3] S. Bird, A. Phansalkar, K. Lizy, A. Mericas, and R. Indukuru. Performance characterization of SPEC CPU

benchmarks on Intel’s core microarchitecture based processor. SPEC Benchmark Workshop, January 21,

2007.

[4] M. Stockman, M. Awad, R. Khanna, L. Christian, H. David, E. Gorbatov, and U. Hanebutte. A novel

approach to memory power estimation using machine learning. ICEAC, 2010.

[5] G. Contreras and M. Martonosi. Power prediction for intel xscale processors using performance

monitoring unit events. Low Power Electronics and Design, 2005. Proceedings of the 2005 International

Symposium, 2005.

[6] Y. Wucherl, K. Larson, L. Baugh, K. Sangkyum, A. Wonsun, and R. Campbell. Automated fingerprinting

of performance pathologies using performancemonitoring units. International Conference on

Measurement and Modeling of Computer Systems, London, 2012.

 [7] Cemal Yilmaz. Using hardware performance counters for fault localization. Proceedings of the 2010

Second International Conference in Advances in System Testing and Validation Lifecycle, 2010.

 [8] David Levinthal. Performance analysis guide for intel core i7 processor and intel xeon 5500

processors. Proceedings of the sixth ACM workshop on Scalable trusted computing, 2008-2009.

 [9] Intel Software Development Tools. Intel C++ compiler user and reference guides

 [10] David W. Shrewsbury. Reducing the impact of software prefetching on register pressure.
Proceedings of the 2000 ACM symposium on Applied computing - Volume 2, pages 767-773

