
Experiments with multi-threaded
velopixel track reconstruction

PASC Conference 2016
8.6.2016

Omar Awile (omar.awile@cern.ch),
Pawel Szostek

mailto:omar.awile@cern.ch?subject=

2

A Thread-Parallel Implementation
of High-Energy Physics Particle

Tracking on Many-Core Hardware
Platforms

Online Computing Challenges at the LHC
Basic constraints:
• limited money
• limited power
• limited manpower 
 
 
Challenges:

• Hard time constraints @ high throughput - 40MHz readout rate at trigger (for
LHCb).

• The task of the Trigger and Data Acquisition (DAQ) is to reduce data volume for
LHC experiments 100 TB/s → 100 PB/yr (factor ~25k).

• While filtering for and reconstructing interesting events.

3

0.00	

10.00	

20.00	

30.00	

40.00	

Alice	 Atlas	 CMS	 LHCb	 LHCb	
today	

Network	–	Projected	Throughput	[Tbit/s]	

Challenges for trigger and DAQ upgrade

4

L1 Trigger DAQ High-Level Trigger
• High efficiency despite

overlapping collisions add
tracking information

• Flexible, robust and easy to
reproduce

• Algorithms must process 
~10’000 events/s

• Collision data spread over
10’000 pieces

• Data gathered onto one of
1000s compute units

• Compute units run complex filter
algorithms

• large software infrastructure
• flat time profile
• complex and costly algorithms

for reconstruction
• difficult to parallelize algorithms

Detector

Readout Units

Compute Units

DAQ Network

For the example of LHCb

Thread-parallel track reconstruction
• Triggering is parallelized by running multiple (serial) instances of

code
• We want to explore how track reconstruction for vertex locator data

can be done on multi- and manycore CPUs - using multithreading.

5

Thread-parallel track reconstruction
• Triggering is parallelized by running multiple (serial) instances of

code
• We want to explore how track reconstruction for vertex locator data

can be done on multi- and manycore CPUs - using multithreading.  
 
 

• Intel Xeon is still the predominant HW architecture in sci.comp. but
can we use it more efficiently?

• Host-mode manycore processors (Knights Landing) with 100s of HW
threads are around the corner, how can we scale that far?

6

TBB

VeloPixel track reconstruction
• Iterative algorithm that finds straight lines in collision event data in VeloPixel sub-

detector.
• Triplets of hits with best criterion are searched (seeding)
• Triplets are extended to tracks if a fitting hit can be found

7

Our design

19/11/2015 DANIEL HUGO CÁMPORA PÉREZ - OPENCL VELOPIX CROSS-PLATFORM STUDIES 10

◦ We keep sequentiality, but each module is processed in parallel
◦ Exploit tiling, data locality

Daniel Campora, LHCb Computing Workshop (2015)

Using OpenMP and TBB for multilevel parallelism

• We would like to be able to compare our parallel code with a typical
production run.

—> we parallelize over events and within each event
• OpenMP uses nested parallelism, parallel for
• TBB For now mostly based on parallel_for

• Also tested pipelining
• Used lock-free parallel implementations

• TBB thread-safe data-structures did not perform well!

8

Results and Timings

9

Recovering track reconstruction efficiency

10

our code
2180404 tracks including 26268 ghosts (1.2%). Event average 1.0%
 velo : 1923734 from 2105493 (91.4%) 30356 clones (1.58%), purity: (99.77%), hitEff: (96.06%)
 long : 671727 from 678628 (99.0%) 8266 clones (1.23%), purity: (99.74%), hitEff: (97.75%)
 long>5GeV : 445784 from 448535 (99.4%) 4672 clones (1.05%), purity: (99.78%), hitEff: (98.26%)
 long_strange : 27152 from 27846 (97.5%) 320 clones (1.18%), purity: (99.21%), hitEff: (97.81%)
 long_strange>5GeV : 13365 from 13679 (97.7%) 116 clones (0.87%), purity: (99.06%), hitEff: (98.55%)
 long_fromb : 38778 from 39148 (99.1%) 368 clones (0.95%), purity: (99.70%), hitEff: (97.94%)
 long_fromb>5GeV : 31989 from 32196 (99.4%) 275 clones (0.86%), purity: (99.73%), hitEff: (98.15%)

Production code aka Brunel (v50r0) PrPixel
2248492 tracks including 56641 ghosts (2.5%). Event average 1.9%
 velo : 1937720 from 2105493 (92.0%) 44013 clones (2.27%), purity: (99.81%), hitEff: (95.40%)
 long : 672751 from 678628 (99.1%) 13556 clones (2.02%), purity: (99.82%), hitEff: (96.72%)
 long>5GeV : 446458 from 448535 (99.5%) 7731 clones (1.73%), purity: (99.83%), hitEff: (97.25%)
 long_strange : 27383 from 27846 (98.3%) 416 clones (1.52%), purity: (99.33%), hitEff: (97.51%)
 long_strange>5GeV : 13436 from 13679 (98.2%) 128 clones (0.95%), purity: (99.16%), hitEff: (98.35%)
 long_fromb : 38897 from 39148 (99.4%) 690 clones (1.77%), purity: (99.78%), hitEff: (97.15%)
 long_fromb>5GeV : 32074 from 32196 (99.6%) 537 clones (1.67%), purity: (99.80%), hitEff: (97.36%)

Timings

Comparing TBB with Brunel
• tbbPixel speedup no HT: 1.88
• tbbPixel speedup HT: 1.29 11

OpenMP Timings
• Runtime very sensitive to scheduling policies (dynamic

vs static, granularities)
• Nested parallel regions often give a slow-down with
respect to non-nested parallelism

12

R
el

at
iv

e
sp

ee
du

p

0

7.5

15

22.5

30

binaries
serial events2 events4 events8 events16 events56

21.81

15.711

8.064
4.0732.0421

0

7.5

15

22.5

30

events2 events4 events8 events16

Event-level parallelism time
Event-level and fillCandidates parallelism

Scalability issues
• Scalability of tbbPixel (or ompPixel) is limited!

• Event execution times vary by up to x50  
—> computational imbalance

• For now we mostly parallelized simple loops
—> we are limited by Amdahl’s law

• A majority of events are very small, loop trip-counts are
very small

—> overhead from multithreading can be significant

13

What next?
• Xeon-Phi Knights Landing:

• We have started testing/benchmarking!
• With 200+ threads scaling is a problem

• TBB Flow Graph or HPX?
• Express our algorithm in terms of small concurrent tasks
• Leave the rest up to scheduler

• How can we reduce computational imbalance?
• Process “small” events only in serial freeing up resources for “big” events

• Understand scaling problems in OpenMP

14

15

Thank you!
Who are we: 

CERN openlab High Throughput Computing Collaboration  
Olof Bärring, Niko Neufeld  
Omar Awile, Paolo Durante, Christian Färber, Karel Hà, Jon Machen (Intel),
Rainer Schwemmer, Srikanth Sridharan, Paweł Szostek, Sébastien Valat,
Balázs Vőneki

Backup

16

General structure of the code

for event in events:

fillCandidates()

for sensor in sensors://52 sensors
trackForwarding()

for hit in sensor.hits:

trackCreation()

for track in tracks:

do_some_stuff_1()

17

fillCandidates():
for sensor in sensors:

for hit in sensor.hits:
for hit2 in sensor.next().hits:

do_some_stuff_2()

trackCreation():

for hit in sensors[s].hits:
for hit2 in sensors.next().hits:

do_some_stuff_4()

trackForwarding():
for track in tracks:

for hit in sensor.hits:
do_some_stuff_3()

LHCb upgrade (2020)
• LHCb studies CP-violation, rare decays, …
• The upgrade:

▪ Currently readout of detector @ 1MHz 
After upgrade: 40MHz

▪ Redesign of DAQ system
▪ yield > 10x more events

18

19

