
Roofline performance analysis
and code optimization

8th LHCb Computing Workshop
16.11.2016

Omar Awile (omar.awile@cern.ch),

mailto:omar.awile@cern.ch?subject=

Performance Models
• Performance models help us better understand why our program is

behaving in a certain way
• With a simple model we abstract away a lot of technical details of the

hardware
• We can better track performance through application development
• Guides performance optimization

• Allows us to prioritize work

• We can make predictions for new code or new hardware

2

A visual performance model for
floating-point applications
Disclaimer: This work was published by S. Williams et al in ACM Communications
52(4), 2009

3

The Roofline Model
• Measure the floating point performance (FLOP/s) as a function of the

arithmetic intensity (i.e. number of FLOPs per byte transferred from
memory/cache).

• Performance is limited by
• the peak performance available  

to the core
• the memory bandwidth times 

the arithmetic intensity

4

FLOP/Byte
arithmetic intensity

pe
rfo

rm
an

ce

FL
O

P
/s

Computational
performance “roof”

Memory

bandwidth “ro
of”

Roofline: Hardware limits

5

• AVX (vector instructions) takes  
4 doubles: 4 x scalar perf 

• FMA (fused multiply add) 
performs 1 multiply & 1 add 
at the same time: 2 x vector perf

Roofline: Software limits

6

kernel 1 kernel 1

Only limited by comp.
performance

Can be limited by
memory/cache
bandwidth
“break” through
roofs by improve
cache blocking &
data/reuse

scalar code

vectorized code
FMA code

Arithmetic Intensities
• Computational codes can be characterized by their arithmetic intensity:

• floating point operations performed per bytes read and written

• A little example: Cholesky decomposition of 3x3 matrices

7

L[0] = sqrt(C[0]);
L_inv = 1.0 / L[0];
L[1] = C[1] * L_inv;
L[3] = C[3] * L_inv;
L[2] = sqrt((C[2] - L[1]*L[1]));
L_inv = 1.0 / L[2];
L[4] = (C[4] - L[3] *L[1]) * L_inv;
L[5] = sqrt((C[5] - L[3]*L[3] - L[4]*L[4]));

Arithmetic Intensities
• Computational codes can be characterized by their arithmetic intensity:

• floating point operations performed per bytes read and written

• A little example: Cholesky decomposition of 3x3 matrices

8

L[0] = sqrt(C[0]);
L_inv = 1.0 / L[0];
L[1] = C[1] * L_inv;
L[3] = C[3] * L_inv;
L[2] = sqrt((C[2] - L[1]*L[1]));
L_inv = 1.0 / L[2];
L[4] = (C[4] - L[3] *L[1]) * L_inv;
L[5] = sqrt((C[5] - L[3]*L[3] - L[4]*L[4]));

16 FLOPs
48 Bytes read
48 Bytes written

0.16 FLOPs/Byte

Arithmetic Intensities
• Computational codes can be characterized by their arithmetic intensity:

• floating point operations performed per bytes read and written

• A little example: Cholesky decomposition of 3x3 matrices

9

L[0] = sqrt(C[0]);
L_inv = 1.0 / L[0];
L[1] = C[1] * L_inv;
L[3] = C[3] * L_inv;
L[2] = sqrt((C[2] - L[1]*L[1]));
L_inv = 1.0 / L[2];
L[4] = (C[4] - L[3] *L[1]) * L_inv;
L[5] = sqrt((C[5] - L[3]*L[3] - L[4]*L[4]));

16 FLOPs
48 Bytes read
48 Bytes written

0.16 FLOPs/Byte

Depends on context: has C been used before? will L be used afterwards?

Arithmetic Intensities
• Computational codes can be characterized by their arithmetic intensity:

• floating point operations performed per bytes read and written

• A little example: Cholesky decomposition of 3x3 matrices

10

L[0] = sqrt(C[0]);
L_inv = 1.0 / L[0];
L[1] = C[1] * L_inv;
L[3] = C[3] * L_inv;
L[2] = sqrt((C[2] - L[1]*L[1]));
L_inv = 1.0 / L[2];
L[4] = (C[4] - L[3] *L[1]) * L_inv;
L[5] = sqrt((C[5] - L[3]*L[3] - L[4]*L[4]));

16 FLOPs
48 Bytes read
48 Bytes written

0.16 FLOPs/Byte

By the way… How many FMAs can we have here?
How does this change the arithmetic intensity?

Some hardware rooflines

11

Hardware limits

12

• By analyzing the specific rooflines for different hardware architectures we
can see what is the maximum performance we can achieve with a
particular code

• Intel x5650 has lowest peak perf  
but it is very well balanced.

• peak perf can be achieved at  
arithmetic intensity < 2.0!

Hardware limits - looking forward

13

• E5-2699v4 shows impressive 
performance.

• Great BW means lower 
“sweat spot” (5 FLOPs/Byte)

Hardware limits - looking forward

14

• E5-2699v4 shows impressive 
performance.

• Great BW means lower 
“sweet spot” (5 FLOPs/Byte)

What about the KNL?

Hardware limits - KNL

15

• Careful: We are comparing single  
CPUs here!

• A dual-socket E5-2699v4 will  
still beat the KNL (but $ x2 !)

• We have to learn how to properly  
use MCDRAM

How to get your own Rooflines

16

The manual way

17

1. Get the roofs for the hardware architecture you are running on
• Using theoretical limits from specification
• Using micro benchmarks: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

2. Get the number of FLOPs the code is incurring
• By analyzing the code
• By using Intel SDE: https://software.intel.com/en-us/articles/intel-software-

development-emulator
3. Get the number of bytes read/written

• By analyzing the code
• By using vtune and hardware counters for memory read/write events

https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://software.intel.com/en-us/articles/intel-software-development-emulator

Kalman Filter

18

• These are single-threaded benchmarks.
• Especially smooth could probably be further improved
• KNL code uses AVX512 & FMA

The automatic way

19

• Intel Analyzer 2018 will have a tool for roofline analysis.
• Currently still in alpha/beta stage, but available at CERN openlab.
• Contact me if you  

are interested

Velopixel track reconstruction

20

• Only one kernel of this algorithm has an arithmetic intensity that can take advantage to
typical optimizations (here we show top 2)

• Overall arithmetic intensity very low —> A completely different approach might be worth it

In Summary

21

• The roofline model can be useful in three ways:
1. It helps tracking hardware performance and allows easily comparing different

platforms
2. It can be used as a tool during code development or optimization to see how

close (or rather how far) are we are to the optimum
3. It gives guidance as to which is the next optimization to attack

• Caveats:
• Bytes read&written is difficult to assess, depends on operations around kernel
• The model works well for small computational kernels —> There is no point in

making a Gaudi roofline!
• Integer operations and memory latency sensitive operations are not exposed

in this model

22

Thank you!
Who are we: 

CERN openlab High Throughput Computing Collaboration  
Olof Bärring, Niko Neufeld  
Luca Atzori, Omar Awile, Paolo Durante, Christian Färber, Placido Fernandez,
Karel Hà, Jon Machen (Intel), Rainer Schwemmer, Sébastien Valat, Balázs
Vőneki

