OpenStack Magnum *Pike* and the CERN cloud

Spyros Trigazis @strigazi

OpenStack Magnum

OpenStack Magnum

#openstack-containers

Kubernetes, Docker Swarm, Apache Mesos, DC/OS (experimental) aaS Deep integration of OpenStack with Container technologies:

- Compute Instances
- Networks, Load Balancers
- Storage
- Security
- Native Container API
- Lifecycle cluster operations
 - Scale cluster up and down
 - More WIP

Contribution by companies

OpenStack Magnum Architecture

Containers and the CERN Cloud

CERN OpenStack Infrastructure

Production since 2013

~ 216.000 cores ~ ~4 million vms created

~200 vms per hour

CERN Container Use Cases

- Batch Processing
- End user analysis / Jupyter Notebooks
- Machine Learning / TensorFlow / Keras
- Infrastructure Management
 - Data Movement, Web servers, PaaS ...
- Continuous Integration / Deployment
- And many others

CERN Magnum Deployment

- Integrate containers in the CERN cloud
 - Shared identity, networking integration, storage access, ...
- Add CERN services in system containers with atomic
- Fast, Easy to use

CERN / HEP Service Integration, Networking, CVMFS, EOS								
Container Investigations Magnum Tests		Magnum Tests	Upstream Development		1		1	
11 / 2015		2015 02 /	/ 2016		Aesos Sup	oport 10	2016	
Pilot Service Deployed						Production	on Servi	ce

CERN Magnum Deployment

- Clusters are described by cluster templates
- Shared/public templates for most common setups, customizable by users

\$ magnum	cluster-template-list
uuid ++	name
	swarm swarm-ha kubernetes kubernetes-ha mesos mesos-ha

CERN Magnum Deployment

- Clusters are described by cluster templates
- Shared/public templates for most common setups, customizable by users

\$ \$(magnum cluster-config myswarmcluster --dir magnum/myswarmcluster)

```
$ docker info / ps / ...
$ docker run --volume-driver cvmfs -v atlas.cern.ch:/cvmfs/atlas -it centos /bin/bash
[root@32f4cf39128d /]#
```


Magnum Benchmarks

Rally Benchmarks and Kubernetes scalability

- Benchmark the Magnum service
 - How fast can I get my container cluster?
 - Use Rally to measure to performance like any other OpenStack service
- Benchmark the resources
 - Ok, it was reasonably fast, what can I do with it?
 - Use a demo provided by Google to measure the performance of the cluster
 - Rally tests for container are under development and near completion

Deployment Setup at CERN and CNCF

CERN

- 240 hypervisors
 - 32 cores, 64 GB RAM, 10Gb inks
- Container storage in our CEPH cluster
- Magnum / Heat setup
 - Dedicated 3 node controllers, dedicated 3 node RabbitMQ cluster
- Flat Network for vms

CNCF

- 100 hypervisors
 - 24 cores, 128 GB RAM
- Container storage in local disk
- Magnum / Heat setup
 - Shared 3 node controllers, shared 5 node RabbitMQ cluster
- Private networks with linux bridge

CERN Results

• Second go: rally and 7 million requests / sec

• Kubernetes 7 million requests / sec

Cluster Size (Nodes)	Concurrency	Deployment Time (min)
2	50	2.5
16	10	4
32	10	4
128	5	5.5
512	1	14
1000	1	23

Requests per Second	10000000									
7.054.444.78	9000000									
.,	8000000									
	7000000							90		
	6000000									
	5000000							~ •		
	4000000									
	3000000									
	2000000									
	1000000									
	0									
	0 ~ 2	0000	100.0.	ひひひく	\$ \$ \$	\$ \$ \$ \$ \$	かやややす	2444	~~~~~	きょうくくょう
Avg. Request Latency	1000ms									
1 E OO maa	900me									
15.08 ms	200mg									
99% Request Latency	700mo									
162.79 ms	700ms									
	Sooms									
	Suums									
	400ms									
	300ms									
	200ms							0-0-	-0-0-0-0-	0-0-0-0-0
	100ms									
	0ms	5 8 6 6 1	0000	234	\$\$\$	\$ \$ \$ \$	ひゃゃゃゃ	1. P. P.	\$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$
Server Availability							# Server	s		# Loadbots
100%							500)		9,449

CNCF Results

Cluster Size (Nodes)	Concurrency	Number of Clusters	Deployment Time (min)
2	10	100	3.02
2	10	1000	Able to create 219 clusters
32	5	100	Able to create 28 clusters

nodes	containers	reqs/sec	latency	flannel
35	1100	1M	83.2 ms	udp
80	1100	1M	1.33 ms	host-gw
80	3100	ЗM	26.1 ms	host-gw

Kubernetes 1M Reqs/Second

¢

Plans for Magnum Pike

- Rolling upgrades of clusters
 - Upgrade to new versions of Kubernetes, Docker Swarm, DC/OS etc
- Heterogeneous Clusters
 - Mix of VMs and Baremetal, spread across AZs
- Docker Swarm Mode
- Container Monitoring
 - Work in Progress for a cadvisor, prometheus and grafana stack
- Container engine logging
- Full support for custom cluster drivers
 - Allow ops deploy easier driver with independent packages
- Baremetal support for all drivers

Cluster Upgrades

Cluster Upgrades

Number One priority for Pike!

- Populate the cluster resource with all cluster_template attributes (started in Ocata)
- 2. Extend the driver_plugin interface
- 3. Create a new *versioned* Driver resource, improve the interaction of magnum with the driver_plugins
- 4. Bump cluster version after each operation
- 5. Handle upgrades with the new Driver resource

Driver Plugin Interface

- 1. validate_config
- 2. get_default_config NEW
- 3. create
- 4. create_dry_run NEW
- 5. update_dry_run NEW
- 6. update
- 7. upgrade NEW
- 8. delete
- 9. get_status NEW
- 10. get_scale_manager
- 11. get_monitor

12. rotate_ca_certificate existing interface, implementation WIP

Driver Resource

- uuid (immutable)
- name (string)
- public (boolean, default=false)
- version (immutable auto-increment integer)
- plugin_name (immutable string, supplied at create time, required)
- cluster_count (integer, derived by database query that counts clusters)
- config (blob of JSON text defaults to output of get_default_config method of the related driver plugin)
- enabled (boolean, default=true)
- latest_version (string uuid of the latest driver version, not visible in a list)

Driver Resource and Cluster versions

- Allow soft Driver resource delete
- On resource update, create a new one and bump the version
- Add auto-increment version field in Clusters
- Add an extra descriptive status/reason field Clusters
- After each cluster operation, bump the version and update the reason accordingly

Updating a Driver

- If no driver_plugin update is needed, update the Driver resource to change the config blob to change an attribute such as an image or COE version
- If the driver_plugin does need to be changed, update the driver package (which should have a new driver plugin version), update the Driver resource

Upgrading a Cluster (end user perspective)

magnum cluster-upgrade <cluster name or id> --version x

Sounds complicated for Devs and Ops?

It is a little more that before... for a few reasons:

- It must be simple for end users
- Managing versioned objects is not trivial for a developers perspective
- We need to allow ops to do proper accounting
 - Without proper accounting and versioning, managing and supporting a lot of clusters, becomes an operational nightmare

Sounds complicated for Devs and Ops?

It is, for a few reasons:

- It must be simple for end users
- Managing versioned objects is not trivial for a developers perspective
- We need to allow ops to do proper accounting
 - Without proper accounting and versioning, managing and supporting a lot of clusters, becomes an operational nightmare

Heterogeneous Clusters phase 1

- Generate existing resource groups dynamically in Magnum
 - Currently, we are locked down to two resource groups per cluster (could be worse, only one :))
- No API changes, leverage existing labels and the new Driver resource to define nodegroups

COE status monitoring and Cluster healing

- Introduce a configurable periodic task to check the status of the COE
 - Are all expected nodes available?
- Add user triggered operation to heal the cluster
 - Driver specific, node replacement, services restart
 - PoC node replacement:

http://clouddocs.web.cern.ch/clouddocs/containers/maintenance.html

Built-in monitoring and logging

- Add a Prometeus, grafana, cadvisor, node-exporter stack
 - Hosted on the COE
 - K8s and Docker swarm implementations are under review
- Leverage the existing docker logging mechanism to advertise its logs
 - Ops will be able to collect them in ElasticSearch, influxDB etc

Other features/optimizations

- Self-Hosted Kubernetes
 - Requires fully containerized kubernetes
- TLS credential caching
- Add more options to tune magnum's periodic tasks
- OpenStack CI improvement, support openSUSE and CoreOS CI

Timeline?

 First working prototype April '17, before the OpenStack Summit in Boston

