
Hybrid
parallelization of

maximum
likelihood fitting

with MPI and
OpenMP

Alfio Lazzaro
alfio.lazzaro@cern.ch

CERN openlab

CERN openlab Minor review meeting
24 April 2012

Maximum Likelihood Fits
§  It allows to estimate free parameters over a data sample,

by minimizing the Negative Log-Likelihood (NLL) function

§  The procedure of minimization can require several
evaluation of the NLL
§  Depending on the complexity of the function, the number of

observables, the number of free parameters, and the number
of events, the entire procedure can require long execution
time

§  Mandatory to speed-up the evaluation of the NLL

n observables
P probability density function
s species, i.e. signals and backgrounds
nj number of events belonging to the species j

N number of events
x̂i set of observables for the event i
θ̂ set of parameters

2 Alfio Lazzaro (alfio.lazzaro@cern.ch)

NLL =
s�

j=1

nj −
N�

i=1



ln
s�

j=1

�
nj

n�

v=1

Pv
j (x

v
i |θ̂j)

�



Algorithm Description

§  Recalling the NLL definition

① Each P (Gaussian, Polynomial,…) is implemented

with a corresponding class (basic PDF)
§  Virtual protected method to evaluate the function
§  Virtual public method to return the normalized value

② Product over all observables (composite PDF)
③ Sum over all species (composite PDF)
④ Reduction of all values

NLL =
s�

j=1

nj −
N�

i=1



ln
s�

j=1

�
nj

n�

v=1

Pv
j (x

v
i |θ̂j)

�


① 

② 
③  ④ 

3 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Implementation description

§  The code is implemented in a library used for different users
analyses
§  ROOT/RooFit in C++ code (official code used in HEP analyses)

§  CERN openlab activity to improve RooFit based on a prototype
(~5K lines of code)
§  Optimization, vectorization, parallelization

§  Summary of changes for optimization and vectorization:
§  Input data are organized in memory as vectors

•  A vector for each observable
•  Improve access to memory by overlapping computation and

memory accesses
§  A loop executed inside each PDF over the values of the

observables
•  A loop iteration per each input event
•  Use Intel compiler for the auto-vectorization of the loops

(using svml library by Intel)
4 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Optimization and vectorization:
Performance results

§  Testing on dual-socket Sandy Bridge-EP server, CPU E5-2680 @
2.7GHz (Turbo OFF), dual socket, 8*2 cores, 20*2MB L3 cache

§  Intel C++ compiler version 12.1.0
§  Input data is composed by 1,000,000 events per 3 observables,

for a total of about 12MB; results are stored in 29 vectors of
1,000,000 values, i.e. about 230MB

§  ~90% of the execution time of the sequential code is spent in
floating-point operations

§  Results:
§  Original RooFit algorithm: 5726s
§  New algorithm (vectorization off): 2097s
§  New algorithm (AVX vectorization): 1054s

§  Total speed-up: 5.4x

Vectorization
gives a 2.0x

speed-up
(AVX)

5 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Parallelization

§  Split of the loop iterations (independent)
§  Decomposition of the input events in chunks to be

executed in parallel
§  Easy to balance: each chunk is composed by the same

number of events
§  Final parallel reduction to evaluate the NLL value

executed in parallel
§  Predictable, takes in account floating point rounding

problem
§  Very easy parallelization with OpenMP

§  Input data are shared in memory
§  Start only a single OpenMP parallel region for each NLL

evaluation: minimum OpenMP overhead, take in account
possible race conditions

Alfio Lazzaro (alfio.lazzaro@cern.ch) 6

OpenMP scalability results
§  Sequential portion 0.3%
§  Satisfactory result

§  Close the Amdahl’s law prediction
§  19.8x with 32 SMT threads! (times 5.4x with respect to original

single-threaded RooFit)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 7

MPI parallelization

§  MPI parallelization allows going beyond the
constraint of the parallel execution on a single host
§  MPI standard de facto for massive HPC parallelization on

distributed hosts connected by network links
§  The standard does not make any basic distinction

whether the MPI processes are running on single
multicore host or they are distributed on
independent hosts
§  In the case of multicore systems it is possible to consider

the hybrid parallelization where each MPI process can run
several OpenMP parallel threads

•  It becomes possible to exploit both shared memory parallelism
enforced by OpenMP and message passing parallelism between
processes enforced by MPI

Alfio Lazzaro (alfio.lazzaro@cern.ch) 8

Adding MPI support

§  Modification of the OpenMP implementation to
exploit also MPI in the computation

§  Each MPI process holds a copy of the whole input
dataset
§  Increase memory footprint

§  Same algorithm of the decomposition of the data
elements used in OpenMP-only implementation
applied twice:
§  Step 1 for the MPI processes
§  Step 2 for the OpenMP threads belonging to each MPI

process

Alfio Lazzaro (alfio.lazzaro@cern.ch) 9

MPI+OpenMP data decomposition

Alfio Lazzaro (alfio.lazzaro@cern.ch) 10

§  P is the number of MPI processes involved, T is the
number of OpenMP threads.

§  OpenMP thread t = 0,1,…(T−1) of the MPI process i
= 0,1,…(P−1) runs on the elements of the input data
arrays with indices in the range [ni

t,ni
t+1-1].

MPI+OpenMP NLL evaluation
1.  Performing the loops on the elements inside each OpenMP

thread of each MPI process
2.  Reduction for the OpenMP threads of each MPI process

§  Each MPI process holds a partial result of the reduction
3.  Broadcast all partial results to all MPI processes, so that

each MPI process will have all partial results
§  Based on MPI function Allgather
§  This is the only communication function (one per NLL evaluation) è

Very limited MPI communication overhead
4.  A second reduction is executed on the MPI partial results to

get the final results on all MPI processes
5.  All MPI processes will proceed to execute the same part of

code (e.g. the minimization in a maximum likelihood fit)
§  Reduce MPI communications in the remaining part of the application
§  At the very end of the application each MPI process will have the

same final results
Alfio Lazzaro (alfio.lazzaro@cern.ch) 11

MPI+OpenMP implementation
§  Initial activity started last year with a CERN openlab summer

student (R. Caravita, see report on the openlab webpage)
§  Possibility to compile without MPI support without losing

functionality, i.e. switch to the OpenMP-only parallelization
§  Based on preprocessor macros

§  MPI calls encapsulated in a singleton class
§  Decoupling the MLfit code from the direct MPI calls

§  Handling the printing to standard output
§  Only MPI process with rank 0 can print

Alfio Lazzaro (alfio.lazzaro@cern.ch) 12

Ruggero Caravita

 Page 7 of 27

mediated by a special class, MPISystem, that takes care of calling MPI if it is enabled or just pass-by
otherwise. Third, moving library function calls from MPISystem to its derived classes via protected virtual
methods, it is possible to support other message-passing libraries different from MPI.

Finally, designing MPISystem with the singleton design pattern it is possible to call automatically
MPI_Init() and MPI_Finalize() without any code modification in the application on the top of RooFit.

In the next sections I explain in more details how these levels of decoupling are implemented.

2.1 Class design
As sketched above, all the calls MPI are decorated with special disabling macros, in a way so that it

is possible to completely disable MPI removing all the function calls and replacing them with default values
valid for OpenMP-only execution. This is actually performed automatically if the code is not compiled with
the MPI compiler (mpic++).

 ENABLE_MPI: the main macro to configure the application for MPI usage. If not defined,

all the calls to MPI are removed from the code even at compile time, avoiding to link the
unnecessary libraries. This macro is not defined if the compiler doesn’t support MPI;

 MPISafeCall(func): call to func is added to the code only if a ENABLE_MPI is defined;
 MPIElse(funct): call to func is added to the code only if ENABLE_MPI is not defined.

The trivial C++ source code to implement those macros is contained in Code block 3.

Code block 3: C++ implementation of the macros for automatic removal of MPI calls from the code

From now on, all these macros are omitted in the next code blocks for readability.
All the other levels of abstraction are achieved by the smart design of MPISystem class: it takes care

of MPI initialization and shutdown, inserts a layer of abstraction between RooFit and real MPI APIs calls
and add support to other message passing libraries such as RCCE (4).

The singleton design pattern is particularly effective since MPI_Init() call, if placed in the default
constructor of the singleton class, will be called only once at the first time the user requests MPI support. A
subtle point, particularly important to match the requirement, is the choice of the singleton design. There
exist many slightly different singleton patterns in C++, while the most common are Gamma singleton and
Meyers singleton, see (5) and (6 p. 32). The Meyers singleton design is particularly interesting for our
purposes since it offers automatic deletion of the instance (see Code block 4); in this way the MPI_Finalize()
call can be easily placed in the default destructor of MPISystem class.

// the purpose of this macro is shutting down MPI
#ifdef ENABLE_MPI
 #define MPISafeCall(p) p
 #define MPIElse(p)
#else
 #define MPISafeCall(p)
 #define MPIElse(p) p
#endif

Single-host performance results
§  OpenMP threads of the MPI processes are bound to cores of

CPUs on different sockets before filling the cores of a given
CPU
§  Maximize available cache per thread
§  Take in account NUMA effect in a multi-socket system
§  E.g.: 4 MPI processes with 2 OpenMP threads each on a dual-socket

system: 2 MPI processes per socket, i.e. 4 OpenMP threads per
socket

§  Configuration with (# MPI)x(1 OpenMP) gives about 2%
better performance with respect to (1 MPI)x(# OpenMP)
§  Better access to the input data (replicated per each MPI process)
§  Side effect: increase memory footprint

§  Good tradeoff when considering a MPI process per socket,
so that corresponding OpenMP threads run on that socket
§  +1% for a dual-socket, +2% for a quad-socket (Westmere-EX

system)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 13

Multi-host performance results

§  Testing on DELL C5220 Microserver, 4 hosts based
on single-socket Sandy Bridge desktop, CPU
E3-1280 @ 3.50GHz (Turbo OFF), 4 cores, 8MB L3
cache
§  One Ethernet link per host @ 1Gb
§  Report in preparation at openlab on the evaluation of the

system
§  Process topology to maximize the number of hosts,

with a single MPI process per each host
§  Comparison of the performance with the Sandy

Bridge-EP system (frequency scaled)
§  Same number of total cores
§  Smaller L3 cache size on the CPU desktop version

Alfio Lazzaro (alfio.lazzaro@cern.ch) 14

Comparison
§  Main limitation comes from the smaller L3 cache

§  Small penalty (1%) already with a single process
§  Higher penalty (16%) when the desktop CPU are fully loaded (32 threads in

total)
§  Analysis of the MPI communication time shows no penalty to the

scalability
§  Overall good scalability

§  Microserver can be a
suitable solution with
respect to a standard
server (dual- or even
quad-socket)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 15

!"##$

!"#%$

!"#&$

!"#'$

!"#($

!"!#$

!"!%$

!"!&$

!"!'$

!"!($

!#$

!!#$

%!#$

)!#$

&!#$

*!#$

'!#$

+!#$

(!#$

,!#$

!$ %$)$ &$ '$ ($!%$!'$)%$

!"
#$

%

&'
(
)%
*+
,%

-%./0%12$3)++)+,%4%-%51)6./%782)"9+,%

-./01$234056789$

:4;3<=63>63$

?.@<$A:4;3<=63>63B-./01$234056789C$

Conclusion
•  Code will be released in the next ROOT release (June 2012)

•  At least the optimization&vectorization and the OpenMP
parallelization

•  Validation ongoing
•  Benefit for several LHC analyses

•  Presented in several conferences (IPDPS, ParCO, CHEP,
ACAT)

•  Used as benchmark for CERN openlab and Intel activities
•  From the hardware perspective, a system based on

microserver can be used instead of a conventional server
•  Note that up to 12 hosts can be embedded

•  A report is in preparation describing the implementation and
results

Alfio Lazzaro (alfio.lazzaro@cern.ch) 16

