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Maximum Likelihood Fits 
§  It allows to estimate free parameters over a data sample, 

by minimizing the Negative Log-Likelihood (NLL) function 

 

§  The procedure of minimization can require several 
evaluation of the NLL 
§  Depending on the complexity of the function, the number of 

observables, the number of free parameters, and the number 
of events, the entire procedure can require long execution 
time 

§  Mandatory to speed-up the evaluation of the NLL 

n observables 
P       probability density function  
s species, i.e. signals and backgrounds 
nj number of events belonging to the species j 

N number of events
x̂i set of observables for the event i
θ̂ set of parameters
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Algorithm Description  

§  Recalling the NLL definition 

 
① Each P (Gaussian, Polynomial,…) is implemented 

with a corresponding class (basic PDF) 
§  Virtual protected method to evaluate the function 
§  Virtual public method to return the normalized value 

② Product over all observables (composite PDF) 
③ Sum over all species (composite PDF) 
④ Reduction of all values 
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Implementation description 

§  The code is implemented in a library used for different users 
analyses 
§  ROOT/RooFit in C++ code (official code used in HEP analyses) 

§  CERN openlab activity to improve RooFit based on a prototype 
(~5K lines of code) 
§  Optimization, vectorization, parallelization 

§  Summary of changes for optimization and vectorization: 
§  Input data are organized in memory as vectors 

•  A vector for each observable 
•  Improve access to memory by overlapping computation and 

memory accesses 
§  A loop executed inside each PDF over the values of the 

observables 
•  A loop iteration per each input event 
•  Use Intel compiler for the auto-vectorization of the loops 

(using svml library by Intel) 
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Optimization and vectorization: 
Performance results 

§  Testing on dual-socket Sandy Bridge-EP server, CPU E5-2680 @ 
2.7GHz (Turbo OFF), dual socket, 8*2 cores, 20*2MB L3 cache 

§  Intel C++ compiler version 12.1.0 
§  Input data is composed by 1,000,000 events per 3 observables, 

for a total of about 12MB; results are stored in 29 vectors of 
1,000,000 values, i.e. about 230MB 

§  ~90% of the execution time of the sequential code is spent in 
floating-point operations 

§  Results: 
§  Original RooFit algorithm: 5726s 
§  New algorithm (vectorization off): 2097s 
§  New algorithm (AVX vectorization): 1054s 

§  Total speed-up: 5.4x 

Vectorization 
gives a 2.0x 

speed-up 
(AVX) 
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Parallelization 

§  Split of the loop iterations (independent)  
§  Decomposition of the input events in chunks to be 

executed in parallel  
§  Easy to balance: each chunk is composed by the same 

number of events 
§  Final parallel reduction to evaluate the NLL value 

executed in parallel 
§  Predictable, takes in account floating point rounding 

problem 
§  Very easy parallelization with OpenMP 

§  Input data are shared in memory 
§  Start only a single OpenMP parallel region for each NLL 

evaluation: minimum OpenMP overhead, take in account 
possible race conditions 
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OpenMP scalability results 
§  Sequential portion 0.3% 
§  Satisfactory result 

§  Close the Amdahl’s law prediction 
§  19.8x with 32 SMT threads! (times 5.4x with respect to original 

single-threaded RooFit) 
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MPI parallelization 

§  MPI parallelization allows going beyond the 
constraint of the parallel execution on a single host 
§  MPI standard de facto for massive HPC parallelization on 

distributed hosts connected by network links 
§  The standard does not make any basic distinction 

whether the MPI processes are running on single 
multicore host or they are distributed on 
independent hosts 
§  In the case of multicore systems it is possible to consider 

the hybrid parallelization where each MPI process can run 
several OpenMP parallel threads 

•  It becomes possible to exploit both shared memory parallelism 
enforced by OpenMP and message passing parallelism between 
processes enforced by MPI  
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Adding MPI support 

§  Modification of the OpenMP implementation to 
exploit also MPI in the computation 

§  Each MPI process holds a copy of the whole input 
dataset 
§  Increase memory footprint 

§  Same algorithm of the decomposition of the data 
elements used in OpenMP-only implementation 
applied twice:  
§  Step 1 for the MPI processes 
§  Step 2 for the OpenMP threads belonging to each MPI 

process  
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MPI+OpenMP data decomposition 
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§  P is the number of MPI processes involved, T is the 
number of OpenMP threads. 

§  OpenMP thread t = 0,1,…(T−1) of the MPI process i 
= 0,1,…(P−1) runs on the elements of the input data 
arrays with indices in the range [ni

t,ni
t+1-1].  



MPI+OpenMP NLL evaluation 
1.  Performing the loops on the elements inside each OpenMP 

thread of each MPI process 
2.  Reduction for the OpenMP threads of each MPI process 

§  Each MPI process holds a partial result of the reduction 
3.  Broadcast all partial results to all MPI processes, so that 

each MPI process will have all partial results 
§  Based on MPI function Allgather 
§  This is the only communication function (one per NLL evaluation) è 

Very limited MPI communication overhead 
4.  A second reduction is executed on the MPI partial results to 

get the final results on all MPI processes 
5.  All MPI processes will proceed to execute the same part of 

code (e.g. the minimization in a maximum likelihood fit) 
§  Reduce MPI communications in the remaining part of the application 
§  At the very end of the application each MPI process will have the 

same final results 
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MPI+OpenMP implementation 
§  Initial activity started last year with a CERN openlab summer 

student (R. Caravita, see report on the openlab webpage) 
§  Possibility to compile without MPI support without losing 

functionality, i.e. switch to the OpenMP-only parallelization 
§  Based on preprocessor macros 

§  MPI calls encapsulated in a singleton class 
§  Decoupling the MLfit code from the direct MPI calls  

§  Handling the printing to standard output 
§  Only MPI process with rank 0 can print 
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Ruggero Caravita 
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mediated by a special class, MPISystem, that takes care of calling MPI if it is enabled or just pass-by 
otherwise. Third, moving library function calls from MPISystem to its derived classes via protected virtual 
methods, it is possible to support other message-passing libraries different from MPI. 

Finally, designing MPISystem with the singleton design pattern it is possible to call automatically 
MPI_Init() and MPI_Finalize() without any code modification in the application on the top of RooFit. 

In the next sections I explain in more details how these levels of decoupling are implemented. 

2.1 Class design 
As sketched above, all the calls MPI are decorated with special disabling macros, in a way so that it 

is possible to completely disable MPI removing all the function calls and replacing them with default values 
valid for OpenMP-only execution. This is actually performed automatically if the code is not compiled with 
the MPI compiler (mpic++). 

 
 ENABLE_MPI: the main macro to configure the application for MPI usage. If not defined, 

all the calls to MPI are removed from the code even at compile time, avoiding to link the 
unnecessary libraries. This macro is not defined if the compiler doesn’t support MPI; 

 MPISafeCall(func): call to func is added to the code only if a ENABLE_MPI is defined; 
 MPIElse(funct): call to func is added to the code only if ENABLE_MPI is not defined. 

 
The trivial C++ source code to implement those macros is contained in Code block 3. 
 

 
Code block 3: C++ implementation of the macros for automatic removal of MPI calls from the code 

 
From now on, all these macros are omitted in the next code blocks for readability. 
All the other levels of abstraction are achieved by the smart design of MPISystem class: it takes care 

of MPI initialization and shutdown, inserts a layer of abstraction between RooFit and real MPI APIs calls 
and add support to other message passing libraries such as RCCE (4). 

The singleton design pattern is particularly effective since MPI_Init() call, if placed in the default 
constructor of the singleton class, will be called only once at the first time the user requests MPI support. A 
subtle point, particularly important to match the requirement, is the choice of the singleton design. There 
exist many slightly different singleton patterns in C++, while the most common are Gamma singleton and 
Meyers singleton, see (5) and (6 p. 32). The Meyers singleton design is particularly interesting for our 
purposes since it offers automatic deletion of the instance (see Code block 4); in this way the MPI_Finalize() 
call can be easily placed in the default destructor of MPISystem class. 

 

// the purpose of this macro is shutting down MPI 
#ifdef ENABLE_MPI 
    #define MPISafeCall(p)      p 
    #define MPIElse(p) 
#else 
    #define MPISafeCall(p) 
    #define MPIElse(p)          p 
#endif 
 



Single-host performance results 
§  OpenMP threads of the MPI processes are bound to cores of 

CPUs on different sockets before filling the cores of a given 
CPU 
§  Maximize available cache per thread 
§  Take in account NUMA effect in a multi-socket system 
§  E.g.: 4 MPI processes with 2 OpenMP threads each on a dual-socket 

system: 2 MPI processes per socket, i.e. 4 OpenMP threads per 
socket 

§  Configuration with (# MPI)x(1 OpenMP) gives about 2% 
better performance with respect to (1 MPI)x(# OpenMP) 
§  Better access to the input data (replicated per each MPI process) 
§  Side effect: increase memory footprint 

§  Good tradeoff when considering a MPI process per socket, 
so that corresponding OpenMP threads run on that socket 
§  +1% for a dual-socket, +2% for a quad-socket (Westmere-EX 

system) 
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Multi-host performance results 

§  Testing on DELL C5220 Microserver, 4 hosts based 
on single-socket Sandy Bridge desktop, CPU 
E3-1280 @ 3.50GHz (Turbo OFF), 4 cores, 8MB L3 
cache 
§  One Ethernet link per host @ 1Gb 
§  Report in preparation at openlab on the evaluation of the 

system 
§  Process topology to maximize the number of hosts, 

with a single MPI process per each host 
§  Comparison of the performance with the Sandy 

Bridge-EP system (frequency scaled) 
§  Same number of total cores 
§  Smaller L3 cache size on the CPU desktop version 
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Comparison 
§  Main limitation comes from the smaller L3 cache 

§  Small penalty (1%) already with a single process 
§  Higher penalty (16%) when the desktop CPU are fully loaded (32 threads in 

total) 
§  Analysis of the MPI communication time shows no penalty to the 

scalability 
§  Overall good scalability 

§  Microserver can be a  
suitable solution with  
respect to a standard  
server (dual- or even  
quad-socket) 
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Conclusion 
•  Code will be released in the next ROOT release (June 2012) 

•  At least the optimization&vectorization and the OpenMP 
parallelization 

•  Validation ongoing 
•  Benefit for several LHC analyses 

•  Presented in several conferences (IPDPS, ParCO, CHEP, 
ACAT) 

•  Used as benchmark for CERN openlab and Intel activities 
•  From the hardware perspective, a system based on 

microserver can be used instead of a conventional server 
•  Note that up to 12 hosts can be embedded 

•  A report is in preparation describing the implementation and 
results 
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