
Alfio Lazzaro (alfio.lazzaro@cern.ch)
CERN/Openlab

2nd Workshop on adapting applications
and computing services to multi-core and

virtualization

June 21th - 22th, 2010
CERN

Introduction: Accelerator systems

  GPUs belong to general accelerator systems:
  Devices that assist a main computer for speeding a

specific calculation
•  Cell BE, ClearSpeed, GPU, Intel Larrabee, etc

  Basically we are talking about many-core
accelerators:
  (Massive) Parallel computer on a chip
  The only way to get benefit from these cards is to write

code highly parallelizable
•  Same difficulties raised in parallel computing
•  Very high performance on specific tasks (high throughput)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 2

Taking as reference HPC…

Alfio Lazzaro (alfio.lazzaro@cern.ch) 3

  Several supercomputers are now based on
accelerator systems (TOP500, June 2010)

New entry in
June 2011!

GPUs: hardware
  There are two main vendors:

  NVIDIA
  ATI/AMD

  Both vendors are in very high competition, providing
“monster” cards in performance

Alfio Lazzaro (alfio.lazzaro@cern.ch) 4

Specifications Westmere X5670 NVIDIA GTX 480 AMD FirePro 3D
V8800

Processing elements 6 cores, 2 threads,
2 way SIMD @

2.93 GHz

16 streaming
multiprocessors, 30
cores, 32 threads @

1.4 GHz

80 units, 32
processors @ 825

MHz

DP GFLOPS 70 336 (4.8x) 528 (7.4x)

Power (Watt) * 95 250 208

GFLOPS/Watt 0.74 1.34 2.54

Price ($) 1,440 for 1k units 499 1,499

* Note that a GPU requires a host PC with CPU (at least 600 Watts in total)

GPUs: hardware
  I will not give details on the hardware

  Look at the vendors website
  However, note the difference nomenclature CPU vs GPU for:

  # processors (cores VS streaming processors)
•  ATI: 1600, NVIDIA: 480
•  CPU: 6-8 (12 for AMD)

  # threads:
•  GPUs are based on thread parallelism, up to 15630 threads in total (light

software thread)
•  16 on Westmere (2 per each core)

  # memory access:
•  GPUs have different types of memory (Global, Shared, L1/L2 Cache,

Texture Cache): access to global memory is 159 GB/s
•  CPU has cache levels (L1/L2/L3): access to memory 25.6 GB/s

  Double Precision VS Single Precision:
•  GPUs are optimized for SP (~4x FLOPS than DP)
•  Not all cards (e.g. notebook cards) support DP
•  Not always the cards are IEEE-754 compatible

Alfio Lazzaro (alfio.lazzaro@cern.ch) 5

GPU HPC solution

  The GeForce GTX 480 (code name GF100) is a “normal”
GPU (for gamers)
  It is based on the FERMI architecture

 (details later), announced last March

  NVIDIA has developed specific cards for HPC, code name
Tesla C2050/C2070
  Still not available
  No video output
  Up to 4 cards stacked in a single box (rack module)

  AMD has a similar solution for HPC: FireStream architecture
Alfio Lazzaro (alfio.lazzaro@cern.ch) 6

NVIDIA

So far so good

  The hardware performance are impressive
  AMD and NVDIA are “almost” equivalent
  NVIDIA marketing:

  But this is an half of the story
  Reality (as usual) is more complicated…

Alfio Lazzaro (alfio.lazzaro@cern.ch) 7

This is a sketch of a what a GPU in 2015 might look
like; it does not reflect any actual product plans.

GPUs: Software

  The real challenge is programming the card
  GPU programming is definitely different from CPU programming

  AMD and NVIDIA provide two different solutions (which can be used
only for their GPUs):
  AMD: SDK which includes “Brook+”, an AMD hardware optimized version of

the Brook language developed by Stanford University, itself a variant of the
ANSI C, open-sourced and optimized for stream computing

  NVIDIA: CUDA provides familiar programming concepts (C/C++ language)
while developing software that can run on the GPU. CUDA compile the code
directly mapping it on the hardware

  Other solutions, which guarantee portability, are:
  OpenCL: developed by Khronos Group
  Compiler companies that have developed language add-ons to simplify

writing portable codes, e.g. RapidMind, CAPS HMPP or the new PGI
compiler with GPU support

Alfio Lazzaro (alfio.lazzaro@cern.ch) 8

CUDA
  CUDA development tools can be integrated with the

conventional C/C++ compiler, so one can mix GPU
code with general-purpose code for the host CPU

  Current version (3.0) supports C and C++
languages. However, there are few important
limitations for the C++:
  Does not allow virtual functions
  Does not allow inheritance
  (interesting that the White Paper for the Fermi architecture

claims that these limitations are now overcome, which
means that they are supported by the new hardware.
Maybe there will introduced in the software in the next
release of CUDA…)

  In my opinion the best way to programming in CUDA
is using C (as in previous version of CUDA)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 9

CUDA Toolkit

  NVCC C/C++ compiler
  CUDA FFT and BLAS libraries for the GPU
   CUDA-gdb and CUDA-memcheck hardware

debugger
   CUDA Visual Profiler
  There is the interesting possibility to emulate

the hardware (but it is deprecated release
3.0)

  Stable, free available, documented and
supported for Windows, Linux and MacOS
  A lot of applications and blogs on the web

Alfio Lazzaro (alfio.lazzaro@cern.ch) 10

CUDA Parallelism
  CUDA automatically manages threads:

  It does NOT require explicit management for threads in the
conventional sense (in the same fashion of OpenMP)

  Fill the card with the maximum number of threads
  Based on SIMT (Single Instruction Multiple Threads)

  Hierarchy of concurrent threads:
  Parallel kernels composed of many threads

•  all threads execute the same sequential program
  Threads are grouped into thread blocks

•  threads in the same block can cooperate (synchronization & data sharing)
•  Blocks must be independent to have the best scalability

  Threads/blocks have unique IDs
  A CUDA thread has its own PC, registers, processor state, etc

and there is no implication about how threads are scheduled
  The GPUs automatically exploits the SIMD vectorization

Alfio Lazzaro (alfio.lazzaro@cern.ch) 11

“Hello World” example

  Some CUDA keywords:

Alfio Lazzaro (alfio.lazzaro@cern.ch) 12

C++ class definition in CUDA

Alfio Lazzaro (alfio.lazzaro@cern.ch) 13

CUDA (Fermi) Memory model
  One of the main problem is the memory

management
  Keep the data close to the threads
  Move data from main (CPU) memory to GPU memory

using the PCI Express

Alfio Lazzaro (alfio.lazzaro@cern.ch) 14

64 KB in total,
~speed of registers

Internal registers
for operations

12 KB, read-only

Introduced with
Fermi: 768 KB (all
clients read/write)

~150x slower
than L1 Cache
(ECC)

Memory and Performance
  CUDA uses 3 memories definitions on the DRAM (they differ

only in caching algorithms and access models):
  Global memory: has the lifetime of the application
  Local memory: lifetime of the thread
  Constant memory (read-only)
  Texture memory (read-only)

  CPU host can refresh and access only: global, constant, and
texture memory

  It is really important to keep data close to threads
  Correct usage of the memories
  Reuse your data
  Reduce communications in the threads

  Move data from CPU memory to GPU memory is a time
expensive operation (PCI-E 2.0 x16 has 4 GB/s)
  The effect can be alleviate with the “zero copy” feature which enables

GPU threads to directly access host memory

Alfio Lazzaro (alfio.lazzaro@cern.ch) 15

Putting everything together
  A GPU requires:

  High degree of task parallelism
  High degree of data parallelism (vectorization)
  Correct use of memory (and cache levels)

  There are all characteristics which are fulfill by few
applications in HPC, for example:
  Algebra (BLAS)
  FFT
  (note that these are provided with CUDA. Note that Linpack

benchmark used for the Top500 is an algebraic package…)
  But what about more general applications?

  In HPC the discussion is ongoing:
•  Recent IBM paper: “Believe it or Not! Multicore CPUs can Match GPUs

for FLOP-intensive Applications!”
•  Few interesting articles in http://www.hpcwire.com/:

–  http://www.hpcwire.com/blogs/GPU-Computing-The-Inevitable-
Transition-96611294.html

–  http://www.hpcwire.com/news/Supercomputings-Future-Is-it-CPU-or-
GPU-96482939.html

Alfio Lazzaro (alfio.lazzaro@cern.ch) 16

What about HEP?
  I think there are few possible applications of GPUs

in HEP (giving current difficulties to move our
frameworks to parallel versions):
  Online reconstruction
  Data analysis (?)

  They requires to rethink the algorithms
  I must say also to rewrite them in C…

  I cannot image a situation where we use GPUs on a
distributed system like GRID (sorry for that)…

  I think the possible use of GPUs is at centralized
level (cluster of GPUs for online) and at user level
(GPU on your laptop/desktop)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 17

Online applications on GPUs
  Fill the GPUs with tracks
  Usually they use Single Precision (take the maximum from the card)
  Take a look at the talk by Mohammad Al-Turany at ACAT10 for GSI

FairROOT:
  http://indico.cern.ch/contributionDisplay.py?contribId=147&confId=59397
  Nice examples:

•  Using texture memory for field maps
•  Geant3 Runge-Kutta propagator rewritten as a CUDA kernel

  Alice people are ready to use GPUs for heavy ions collisions
reconstruction
  See David Rohr at the International Tracking Workshop, GSI, June 7-11,

2010 (https://www.gsi.de/documents/FOLDER-9871272014070.html)
  I know that there is a work ongoing in Atlas to use GPUs for trigger

  I’m not aware of other projects. Sorry if your project is missing in my list…

Alfio Lazzaro (alfio.lazzaro@cern.ch) 18

Mohammad’s results

Alfio Lazzaro (alfio.lazzaro@cern.ch) 19

Alfio Lazzaro (alfio.lazzaro@cern.ch) 20

Data analysis applications
  Data analysis can be considered at user level

  Provide a common interface to compute some algorithms on
the CPU/GPU

  Use Double Precision
  There are some cases where we can “directly” use

GPUs
  Algebra computation
  Convolutions using FFT

  In other cases we need to (deeply) rethink the code
  Code is based on C++ virtual classes (basically ROOT classes)
  In some cases we need to “downgrade” to C
  In any case I think the first step is to optimize and parallelize

the current version code for CPU and then move to GPU (for
very specific cases)

•  Most of data analysis will never fill a GPU (parallelization on CPU is more
than enough)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 21

Data analysis applications

  In Openlab we are starting a project to exploit the GPUs
for RooFit/RooStats, which are package for data analysis
in ROOT:
  Working with the authors
  Taking complex example of joint Atlas-CMS analysis

  We will use CUDA (and OpenCL as reference)
  Basically we have a function and we calculate it on

several data
  First difficulty is that the function is a composition of C++ classes

with virtual methods
  Try to have a plain “C” implementation
  However, it can be the case that we will never able to fill the card

•  Try different algorithms, like Genetic algorithm, which are highly parallelizable

  I know there are other works in HEP with similar goals,
but I don’t know of any available code

Alfio Lazzaro (alfio.lazzaro@cern.ch) 22

Conclusions

  GPUs are promising devices for the future in
case of intensive calculations

  However they are not easy to program
  Requires massive parallelization (not all

applications can benefit)
  NVIDIA provides a SDK with CUDA, but it is

device-dependent
  OpenCL will provide an hardware-free

implementation (OpenCL is similar to the CUDA
programming style)

  There are good results for online track
reconstruction and trigger

Alfio Lazzaro (alfio.lazzaro@cern.ch) 23

Conclusions
  Data analysis can be another field suitable for GPUs

  Work in progress in Openlab

  Note that in any case it is mandatory to migrate our
code to parallel version already for CPU
  Use GPUs parallelization could not be trivial
  Of course, this not prevent to try the porting of our code on

GPUs (sooner is better than later)

  There are many HPC applications already running
on GPUs (see http://gpucomputing.net/)
  Is the GPUs a real solutions in HPC? Discussion is

ongoing… For sure they will play an important role
  In future other accelerator solutions will be available, like

Intel Knight Ferry, based on Larrabee architecture: x86
compatible, much easier to program…

Alfio Lazzaro (alfio.lazzaro@cern.ch) 24

