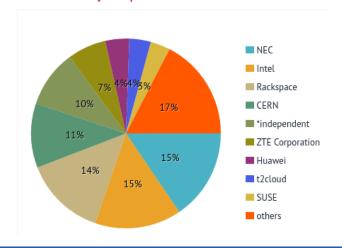
OpenStack Magnum @CERN

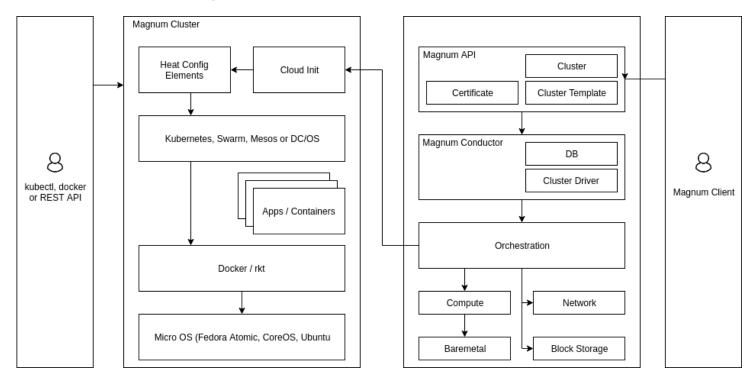
Scaling Container Clusters to thousand of nodes

Spyros Trigazis @strigazi


OpenStack Magnum

#openstack-containers

Kubernetes, Docker Swarm, Apache Mesos, DC/OS (experimental) aas Deep integration of OpenStack with Container technologies:

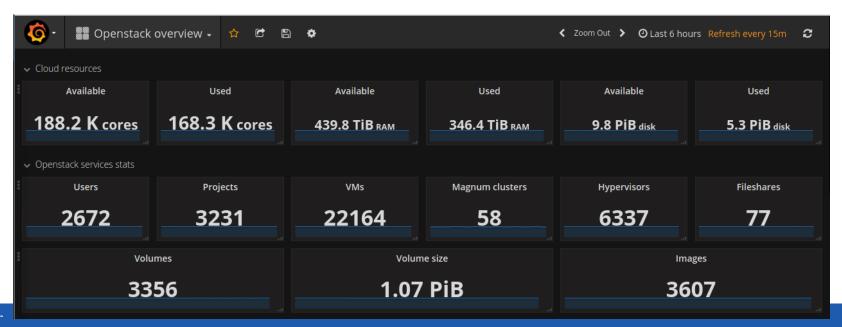

- Compute Instances
- Networks, Load Balancers
- Storage
- Security
- Native Container API
- Lifecycle cluster operations
 - Scale cluster up and down
 - More WIP

Contribution by companies

OpenStack Magnum Architecture

Plans for Magnum Pike

- Rolling upgrades of clusters
 - Upgrade to new versions of Kubernetes
- Heterogeneous Clusters
 - Mix of VMs and Baremetal, spread across AZs
- Docker Swarm Mode
- Container Monitoring
 - Work in Progress for a cadvisor, prometheus and grafana stack
- Full support for custom cluster drivers
 - Allow ops deploy easier driver with independent packages
- Baremetal support for all drivers

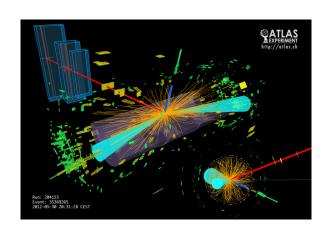


CERN OpenStack Infrastructure

Production since 2013

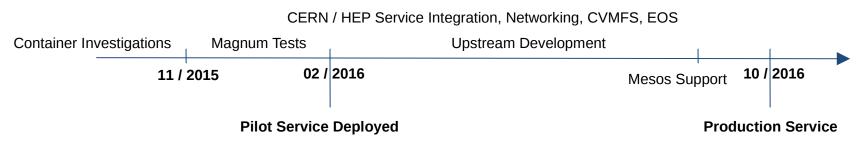
~ 190.000 cores ~ 4 million vms created

~200 vms per hour



CERN Container Use Cases

- Batch Processing
- End user analysis / Jupyter Notebooks
- Machine Learning / TensorFlow / Keras
- Infrastructure Management
 - Data Movement, Web servers, PaaS ...
- Continuous Integration / Deployment
- And many others



CERN Magnum Deployment

- Integrate containers in the CERN cloud
 - Shared identity, networking integration, storage access, ...
- Add CERN services in system containers with atomic
- Fast, Easy to use

CERN Magnum Deployment

- Clusters are described by *cluster templates*
- Shared/public templates for most common setups, customizable by users

CERN Magnum Deployment

- Clusters are described by cluster templates
- Shared/public templates for most common setups, customizable by users

Rally Benchmarks and Kubernetes scalability

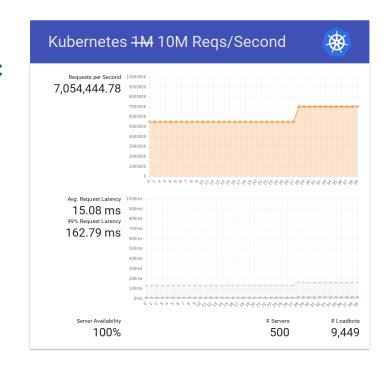
- Benchmark the Magnum service
 - How fast can I get my container cluster?
 - Use Rally to measure to performance like any other OpenStack service
- Benchmark the resources
 - Ok, it was reasonably fast, what can I do with it?
 - Use a demo provided by Google to measure the performance of the cluster
 - Rally tests for container are under development and near completion

Deployment Setup at CERN and CNCF

CERN

- 240 hypervisors
 - o 32 cores, 64 GB RAM, 10Gb inks
- Container storage in our CEPH cluster
- Magnum / Heat setup
 - Dedicated 3 node controllers, dedicated 3 node RabbitMQ cluster
- Flat Network for vms

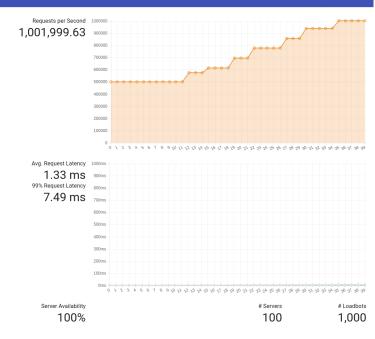
CNCF


- 100 hypervisors
 - o 24 cores, 128 GB RAM
- Container storage in local disk
- Magnum / Heat setup
 - Shared 3 node controllers, shared 5 node RabbitMQ cluster
- Private networks with linux bridge

CERN Results

- Second go: rally and 7 million requests / sec
 - Kubernetes 7 million requests / sec

Cluster Size (Nodes)	Concurrency	Deployment Time (min)
2	50	2.5
16	10	4
32	10	4
128	5	5.5
512	1	14
1000	1	23


CNCF Results

Cluster Size (Nodes)	Concurrency	Number of Clusters	Deployment Time (min)
2	10	100	3.02
2	10	1000	Able to create 219 clusters
32	5	100	Able to create 28 clusters

nodes	containers	reqs/sec	latency	flannel
35	1100	1M	83.2 ms	udp
80	1100	1M	1.33 ms	host-gw
80	3100	3M	26.1 ms	host-gw

Kubernetes 1M Reqs/Second

