0

Experiments with multi-threadead
velopix track reconstruction

7th LHCb Computing Workshop
2.6.2016

Omar Awile (omar.awile@cern.ch),
Pawel Szostek

* P
“Wem

. ‘.
CERNopenlab

mailto:omar.awile@cern.ch?subject=

* >
“Wem

L '.
CERNopenlab

o ——
Xeon'

7)
r‘l @m(mw

Xeon PhiJ

H

Some context... and motivation

- We want to explore how velopixel track reconstruction can

be done on multi- and manycore CPUs - using
multithreading.

OpenMP —

) 2

BB

- Intel Xeon is still the predominant HW architecture in

sci.comp. but can we use it more efficiently?

- Host-mode manycore processors (Knights Landing) with

100s of HW threads are around the corner, how can we
scale that far?

* o
.\".

. ‘.
CERNopenlab

| et’s not start from scratch

- We ported Daniel Campora’s clPixel to serial C++ for
a baseline

- From there experimented with
* OpenMP

[TBB We chose track forwarding

The production LHCb algorithm for velopix is searchByPair, a flavour of Track Forwarding
For each pair of unused hits, a third hit is searched
The first one found compatible is kept [hits are preordered by X]

= T =

« vectorization

—t

—_—

* P
."..
. -

>
CERNopenlab

« We found a hotspot! but...

&) Program metris
Blagsed Time: .49
Vechior insinchion Set: Noow

) Loop metriks
el CPU time

vectorization

* loop is small and contains a reduction
+ Use openmp-simd reductions
- Other loops.... difficult
- e.g. fillCandidates loop has multiplg exits

Number of CPU Theeads: 1

ren o

T 1 0 wiTorihed loogs o

e i scslar code

sem N)

¢ Vectorization GalwEMclency (Not avallable)
& Top time-consuming loops

Loop Source Locaten Sel Tieme ®tel Tiere ™o Courty
- rrBeuts SenaNerel o0 4 1 6000% 1 S8 L1

* Caoddali: Setalared ool oS 04003 24103 s1

® trailestin Senplierved (pp X0 817005 2.0000s 9

" ackf ormardieg Sedalverel o0 247 °0M0s 25000 “

O senaiGeerchibyhpiets enaliemel 50213 90200 202008 o

Program metrics
Clagned Time: 2 308
Vector Inetnuction Set VX, a2

&) Loop metrics

Number of O Threads 1

Total CPU teme 2% 100 0%
Time in § vectonased loop 0 B)
Time in scalar code 1.5 T -
) Vectorization GalwEfficiency
Vectorized Loogn GanEMickency 27x 2 2
Program Theoretcal Oan 1 54
&~ Top time-consuming loops
Locy Source Lacabion Sl Tene el Tene
fodBesten Seoaliemel cop S0 0.7200s 072005
Canddales Stnalbered (oo L9 O %00n 0.3100s
fodBeste Senalieme! cop 30 021008 0 96003
Lachf ovai 0og SAtalvered (oo 280 010008 0.5100¢
dnde Reaoeld ©.0000s 0 0600y

* P

CERNope.nlab

)

Some OpenMP experiments

- |[dea: “inject” nested parallel regions at different iteration
levels

- Manipulate them using C macros (turning parallelism on
and off, changing number of threads and scheduling
policies)

- Find the best settings by exploring the parameter space

* P

>

CERN ope.nlab

)

Using TBB for multilevel parallelism

- We would like to be able to compare our parallel code with

a typical production run.
—> we parallelize over events and within each event

- For now mostly based on TBB parallel_for

- Also tested pipelining

- Used lock-free parallel implementations

- TBB thread-safe data-structures did not perform well!

* P

‘s
CERNopenlab

Results and Timings

H

* P

% Making sure results are OK

8
CERNopenlab

Brunel (v50r@) PrPixel
2248492 tracks including 56641 ghosts (

o°

.5%). Event average 1.

2 9
velo : 1937720 from 2105493 (92.0%) 44013 clones (2.27%), purity: (99.81%), hitEff: (95.40%)
long : 672751 from 678628 (99.1%) 13556 clones (2.02%), purity: (99.82%), hitEff: (96.72%)
long>5GeV : 446458 from 448535 (99.5%) 7731 clones (1.73%), purity: (99.83%), hitEff: (97.25%)
long_strange : 27383 from 27846 (98.3%) 416 clones (1.52%), purity: (99.33%), hitEff: (97.51%)
long_strange>5GeV : 13436 from 13679 (98.2%) 128 clones (0.95%), purity: (99.16%), hitEff: (98.35%)
long_fromb : 38897 from 39148 (99.4%) 690 clones (1.77%), purity: (99.78%), hitEff: (97.15%)
long_fromb>5GeV : 32074 from 32196 (99.6%) 537 clones (1.67%), purity: (99.80%), hitEff: (97.36%)
(tbb|omp)Pixel

2180404 tracks including 26268 ghosts (1.2%). Event average 1.0%
velo : 1923734 from 2105493 (91.4%) 30356 clones (1.58%), purity: (99.77%), hitEff: (96.06%)
long : 671727 from 678628 (99.0%) 8266 clones (1.23%), purity: (99.74%), hitEff: (97.75%)
long>5GeV : 445784 from 448535 (99.4%) 4672 clones (1.05%), purity: (99.78%), hitEff: (98.26%)
long_strange : 27152 from 27846 (97.5%) 320 clones (1.18%), purity: (99.21%), hitEff: (97.81%)
long_strange>5GeV : 13365 from 13679 (97.7%) 116 clones (0.87%), purity: (99.06%), hitEff: (98.55%)
long_fromb : 38778 from 39148 (99.1%) 368 clones (0.95%), purity: (99.70%), hitEff: (97.94%)
long_fromb>5GeV : 31989 from 32196 (99.4%) 275 clones (0.86%), purity: (99.73%), hitEff: (98.15%)

* P

War OpenMP Timings

. ‘.
CERNopenlab

- Runtime very sensitive to scheduling policies (dynamic
Vs static, granularities)

- Nested parallel regions often give a slow-down with
respect to non-nested parallelism
30

30
=3
3 225 22.5
16}
)
&
2 15 15
=
s
)
K 7.5 7.5
0 0
serial events2 events4 events8 events16 eventsb6 events2 events4 events8 events16

- binaries Bl Event-level parallelism time
Il Event-level and fillCandidates parallelism 9

* o

W BB Timings

>
CERNopenlab
pe Throughput comparnision PrPxelTracking vs. cl_forward TBB Throughput comparision PrPixelTracking vs. c_forward TB8
on HSW 2xES5-2683 v3 on BDW 2xE5.2683 w4
8000 2000
7000 8000
€000 ooe
€000
000

" “

2 4000 £
o 2 4000

Y 2000 N
3000
2000 2000
000 1000
0 0

l >
& o <

Qﬁ)\g"“ & o
Comparing TBB with Brunel without HT (production?)
- tbbPixel speedup on HSW: 1.84

@ - tbbPixel speedup on BDW: 1.88 10

* P
.~'..

. ‘.
CERNopenlab

tobPixel on the Xeon-Phi
- Very preliminary!
- When compared with KNC, KNL shows a big boost!
- Comparing with Xeon is not that easy

* P

‘s
CERNopenlab

What we've learned

H

12

* P

iy vectorization

CERNopenlab

- If you can, use the Intel tools!

- 1cpc —qopt-report=>5
Generated reports are very wordy, but can give valuable
hints on where it is worth vectorizing and what could be

tried

- Intel Advisor
Comprehensive tool for code vectorization and threading

analysis

A n

* o
.\".

. ‘.
CERNopenlab

Parallelization strategies

xram of execubion tme for event J0op Lody for 512 events on HSY

- Scalability of tbbPixel (or ompPixel) is limited! .:L |

- Event execution times vary by up to x1000
—> computational imbalance :

- For now we mostly parallelized simple loops

-1
E @«
2

—> we are limited by Amdahl’s law

- A majority of events are very small, loop trip-counts are
very small

—> overhead from multithreading can be significant

A 14

* P

‘s
CERNopenlab

BIts and pieces

H

15

* P

L ‘.
CERNopenlab

Data Generation

- For rapid prototyping we want to break out of LHCb software

stack.
 Still work with “real” data

« PrEventDumper: https://qgitlab.cern.ch/oawile/PrEventDumper
- The algorithm can be controlled with a Brunel configurable

parameter to output only (velopix) data or MC particle and
track data (e.g. for validation).

16

https://gitlab.cern.ch/oawile/PrEventDumper

* P
...‘ of m

8
CERNopenlab

* should be extendible

« should work with flat data format

- EventAnalyzer: https://gitlab.cern.ch/oawile/EventAnalyzer
« Written in python

* returns validation in format similar to PrChecker

$ python2.7 validator.py -v —-f results.txt

Reading data:

done.

2248492 tracks including
velo :
long :

long>5GeV :

long_strange :
long_strange>5GeV :
long_fromb :
long_fromb>5GeV :

1937720
672751
446458

27383
13436
38897
32074

from
from
from
from
from
from
from

56641 ghosts (

2105493
678628
448535

27846
13679
39148
32196

* Needed a simple track validation tool
- Also:
+ should be independent of Brunel

Result validation

.5%) .

92.
99.
99.
98.
98.
99.
99.

Event
%, 92.
1%, 99.
5%, 99.
3%, 98.
2%, 98.
4%, 99.
6%, 99.

average

N
%)

44013
13556
7731
416
128
690
537

1.9%

clones
clones
clones
clones
clones
clones
clones

o~~~ o~~~ o~

PRORRLNN

.27
.02%) ,
.73
.52%),
.95
.77%) ,
.67

()
o

[
©

()
-5

()
o

),
),
),
),

purity:
purity:
purity:
purity:
purity:
purity:
purity:

o~~~ e~~~

99.
99.
99.
99.
99.
99.
99.

815,
825,
83%,
33%,
16%,
785,
805,

99.
99.
99.
99.
99.
99.
99.

hitEff:
hitEff:
hitEff:
hitEff:
hitEff:
hitEff:
hitEff:

o~~~ e~~~

95.
96.
97.
97.
98.
97.
97.

40%,
72%,
25%,
51%,
35%,
155,
36%,

95.34%)
96.67%)
97.18%)
97.15%)
98.04%)
96.83%)
97.04%)

https://gitlab.cern.ch/oawile/EventAnalyzer

* P

L] ‘.
CERNopenlab

What next?

+ Knights Landing:

- We have started testing/benchmarking!
- With 200+ threads scaling is a problem

* TBB Flow Graph or HPX?

* Express our algorithm in terms of small concurrent tasks
* Leave the rest up to scheduler

- How can we reduce computational imbalance?

* Process “small” events only in serial freeing up resources for “big” events

* Understand scaling problems in OpenMP

18

* P
.\'..

. ‘.
CERNopenlab

Thank you!

Resources:

cl_forward: https://qitlab.cern.ch/oawile/cl forward

PrEventDumper: https://gitlab.cern.ch/oawile/PrEventDumper

EventAnalyzer: https://gitlab.cern.ch/oawile/EventAnalyzer
Data format: https://gitlab.cern.ch/oawile/EventAnalyzer/blob/master/DATAFORMAT.md

19

https://gitlab.cern.ch/oawile/cl_forward
https://gitlab.cern.ch/oawile/PrEventDumper
https://gitlab.cern.ch/oawile/EventAnalyzer
https://gitlab.cern.ch/oawile/EventAnalyzer/blob/master/DATAFORMAT.md

* P

‘s
CERNopenlab

BSackup

20

* P
.\.'.

>
CERNopenlab

General structure of the code

fillCandidates():
for sensor in sensors:

for event in events:

fillcandidates () /

for hit in sensor.hits:
’,—JV' for hit2 in sensor.next().hits:
do_some_stuff 2()

for sensor in sensors://52 sensors
trackForwarding ()
for hit in sensor.hits:

trackCreation()

trackForwarding():
for track in tracks:

\

for hit in sensor.hits:
do _some_stuff 3 ()

for track in tracks:
do_some_stuff 1()

trackCreation():

N

for hit in sensors[s].hits:

for hit2 in sensors.next().hits:
do_some_stuff 4()

H

21

* o

. ‘.
CERNopenlab

22

