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Some context... and motivation

- We want to explore how velopixel track reconstruction can

be done on multi- and manycore CPUs - using
multithreading.

OpenMP —

) 2

BB

- Intel Xeon is still the predominant HW architecture in

sci.comp. but can we use it more efficiently?

- Host-mode manycore processors (Knights Landing) with

100s of HW threads are around the corner, how can we
scale that far?
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| et’s not start from scratch

- We ported Daniel Campora’s clPixel to serial C++ for
a baseline

- From there experimented with
* OpenMP

[ TBB We chose track forwarding

The production LHCb algorithm for velopix is searchByPair, a flavour of Track Forwarding
For each pair of unused hits, a third hit is searched
The first one found compatible is kept [hits are preordered by X]
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« vectorization
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« We found a hotspot! but...

&) Program metris
Blagsed Time: .49
Vechior insinchion Set: Noow

) Loop metriks
el CPU time

vectorization

* loop is small and contains a reduction
+ Use openmp-simd reductions
- Other loops.... difficult
- e.g. fillCandidates loop has multiplg exits
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Some OpenMP experiments

- |[dea: “inject” nested parallel regions at different iteration
levels

- Manipulate them using C macros (turning parallelism on
and off, changing number of threads and scheduling
policies)

- Find the best settings by exploring the parameter space
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Using TBB for multilevel parallelism

- We would like to be able to compare our parallel code with

a typical production run.
—> we parallelize over events and within each event

- For now mostly based on TBB parallel_for

- Also tested pipelining

- Used lock-free parallel implementations

- TBB thread-safe data-structures did not perform well!
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Results and Timings
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Brunel (v50r@) PrPixel
2248492 tracks including 56641 ghosts (

o°

.5%). Event average 1.

2 9
velo : 1937720 from 2105493 ( 92.0%) 44013 clones ( 2.27%), purity: ( 99.81%), hitEff: ( 95.40%)
long : 672751 from 678628 ( 99.1%) 13556 clones ( 2.02%), purity: ( 99.82%), hitEff: ( 96.72%)
long>5GeV : 446458 from 448535 ( 99.5%) 7731 clones ( 1.73%), purity: ( 99.83%), hitEff: ( 97.25%)
long_strange : 27383 from 27846 ( 98.3%) 416 clones ( 1.52%), purity: ( 99.33%), hitEff: ( 97.51%)
long_strange>5GeV : 13436 from 13679 ( 98.2%) 128 clones ( 0.95%), purity: ( 99.16%), hitEff: ( 98.35%)
long_fromb : 38897 from 39148 ( 99.4%) 690 clones ( 1.77%), purity: ( 99.78%), hitEff: ( 97.15%)
long_fromb>5GeV : 32074 from 32196 ( 99.6%) 537 clones ( 1.67%), purity: ( 99.80%), hitEff: ( 97.36%)
(tbb|omp)Pixel

2180404 tracks including 26268 ghosts ( 1.2%). Event average 1.0%
velo : 1923734 from 2105493 ( 91.4%) 30356 clones ( 1.58%), purity: ( 99.77%), hitEff: ( 96.06%)
long : 671727 from 678628 ( 99.0%) 8266 clones ( 1.23%), purity: ( 99.74%), hitEff: ( 97.75%)
long>5GeV : 445784 from 448535 ( 99.4%) 4672 clones ( 1.05%), purity: ( 99.78%), hitEff: ( 98.26%)
long_strange : 27152 from 27846 ( 97.5%) 320 clones ( 1.18%), purity: ( 99.21%), hitEff: ( 97.81%)
long_strange>5GeV : 13365 from 13679 ( 97.7%) 116 clones ( 0.87%), purity: ( 99.06%), hitEff: ( 98.55%)
long_fromb : 38778 from 39148 ( 99.1%) 368 clones ( 0.95%), purity: ( 99.70%), hitEff: ( 97.94%)
long_fromb>5GeV : 31989 from 32196 ( 99.4%) 275 clones ( 0.86%), purity: ( 99.73%), hitEff: ( 98.15%)
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- Runtime very sensitive to scheduling policies (dynamic
Vs static, granularities)

- Nested parallel regions often give a slow-down with
respect to non-nested parallelism
30
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- binaries Bl Event-level parallelism time
Il Event-level and fillCandidates parallelism 9
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pe Throughput comparnision PrPxelTracking vs. cl_forward TBB Throughput comparision PrPixelTracking vs. c_forward TB8
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Comparing TBB with Brunel without HT (production?)
- tbbPixel speedup on HSW: 1.84

@ - tbbPixel speedup on BDW: 1.88 10
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tobPixel on the Xeon-Phi
- Very preliminary!
- When compared with KNC, KNL shows a big boost!
- Comparing with Xeon is not that easy
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What we've learned

H
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- If you can, use the Intel tools!

- 1cpc —qopt-report=>5
Generated reports are very wordy, but can give valuable
hints on where it is worth vectorizing and what could be

tried

- Intel Advisor
Comprehensive tool for code vectorization and threading

analysis

A n
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Parallelization strategies

xram of execubion tme for event J0op Lody for 512 events on HSY

- Scalability of tbbPixel (or ompPixel) is limited! .:L |

- Event execution times vary by up to x1000
—> computational imbalance :

- For now we mostly parallelized simple loops

-1
E @«
2

—> we are limited by Amdahl’s law

- A majority of events are very small, loop trip-counts are
very small

—> overhead from multithreading can be significant

A 14
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BIts and pieces
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Data Generation

- For rapid prototyping we want to break out of LHCb software

stack.
 Still work with “real” data

« PrEventDumper: https://qgitlab.cern.ch/oawile/PrEventDumper
- The algorithm can be controlled with a Brunel configurable

parameter to output only (velopix) data or MC particle and
track data (e.g. for validation).

16
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* should be extendible

« should work with flat data format

- EventAnalyzer: https://gitlab.cern.ch/oawile/EventAnalyzer
« Written in python

* returns validation in format similar to PrChecker

$ python2.7 validator.py -v —-f results.txt

Reading data:

done.

2248492 tracks including
velo :
long :

long>5GeV :

long_strange :
long_strange>5GeV :
long_fromb :
long_fromb>5GeV :

1937720
672751
446458

27383
13436
38897
32074

from
from
from
from
from
from
from

56641 ghosts (

2105493
678628
448535

27846
13679
39148
32196

* Needed a simple track validation tool
- Also:
+ should be independent of Brunel

Result validation
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https://gitlab.cern.ch/oawile/EventAnalyzer
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What next?

+ Knights Landing:

- We have started testing/benchmarking!
- With 200+ threads scaling is a problem

* TBB Flow Graph or HPX?

* Express our algorithm in terms of small concurrent tasks
* Leave the rest up to scheduler

- How can we reduce computational imbalance?

* Process “small” events only in serial freeing up resources for “big” events

* Understand scaling problems in OpenMP

18
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Thank you!

Resources:

cl_forward: https://qitlab.cern.ch/oawile/cl forward

PrEventDumper: https://gitlab.cern.ch/oawile/PrEventDumper

EventAnalyzer: https://gitlab.cern.ch/oawile/EventAnalyzer
Data format: https://gitlab.cern.ch/oawile/EventAnalyzer/blob/master/DATAFORMAT.md

19
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BSackup
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General structure of the code

fillCandidates():
for sensor in sensors:

for event in events:

fillcandidates () /

for hit in sensor.hits:
_’_,—JV' for hit2 in sensor.next().hits:
do_some_stuff 2()

for sensor in sensors://52 sensors
trackForwarding ()
for hit in sensor.hits:

trackCreation()

trackForwarding():
for track in tracks:

\

for hit in sensor.hits:
do _some_stuff 3 ()

for track in tracks:
do_some_stuff 1()

trackCreation():

N

for hit in sensors[s].hits:

for hit2 in sensors.next().hits:
do_some_stuff 4()

H

21
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