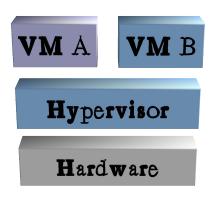


Virtualization

15 November 2007

Håvard Bjerke

HW virtualization introduction and motivation


- OS Farm
 - tool for creating and storing VM images
- Content Based Transfer
 - technique for efficient transfer of VM images

HW virtualization intro

 Allows running several virtual machines (VMs) simultaneously on a single physical machine

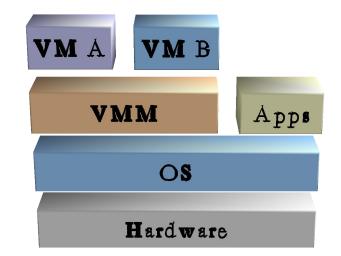
- Classic consolidation scenario:
 - Run database and web server on the same machine
 - Run different services in separate VMs, pinned to separate CPU cores

Save \$

Virtualization in Grids

- Benefits for Grids
 - Secure isolation
 - Small Trusted Computing Base in Xen
 - Isolate malicious software
 - Software flexibility
 - Better ability to satisfy requirements for execution environments
 - E.g. run both SLC3 and SLC4 on one physical node
 - Serialization, Live migration
 - Migrate essential services upon
 - hardware failure, or
 - maintenance

Virtualization Attributes



- Hosted vs non-hosted models
- Technique
 - Paravirtualization vs full virtualization
 - Binary rewriting
- Hardware acceleration
 - Intel VT CPU and chipset hardware extensions
- Performance attributes
 - I/O performance
 - CPU performance

Virtualization Models

- Hosted
 - VMWare Server
 - Microsoft
 Virtualization
 Server
- Non-hosted
 - Xen
 - VMWare ESX

Virtualization Techniques

Paravirtualization

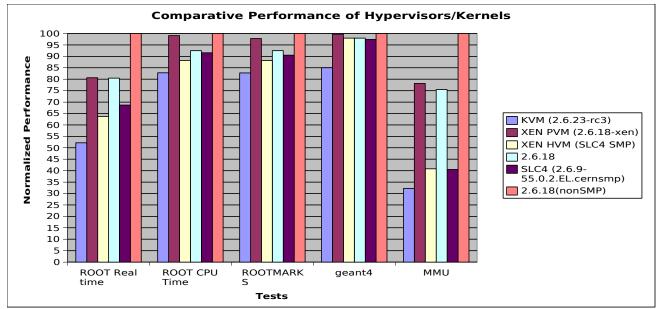
- Requires cooperation from guest operating system
- Requires modification to source code of guest OS
 - Linux, Solaris and FreeBSD is OK
 - MS Windows not OK
- Examples: Xen, Iguest
- Binary rewriting/patching
 - Guest OS execution is modified at runtime
 - Does not require modification of guest OS
 - MS Windows, Linux, etc. OK
 - Examples: VMWare Server, MS Virtualization Server

Hardware Acceleration

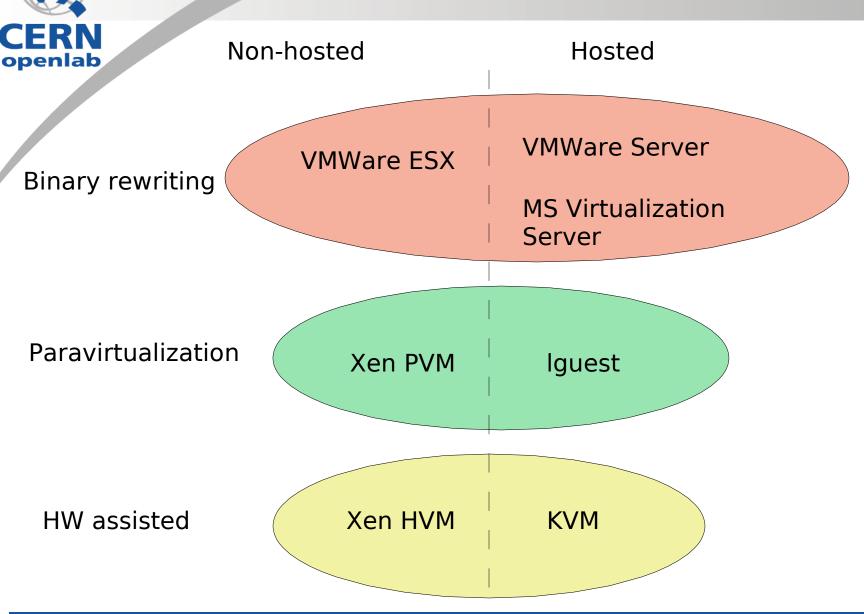
1st generation Intel VTx CPU extensions

- Allow full virtualization without binary rewriting or interpretation
- A -1 or "VMX Root" privilege level
- Already mainstream in Core architecture

2nd generation Intel VTx CPU extensions


- Add Extended Page Tables
- Support guest VMs' page tables nested inside host's page tables
- Intel VTd chipset extensions allow more efficient partitioning of I/O

Allocate device addresses to VMs


Performance Attributes

- Xen's virtual hardware has proved itself to be a good competitor to physical hardware
- Adds convenience while negligibly affecting performance

Virtualization Landscape

VM deployment

• Two tools already developed at CERN

- SmartDomains
 - life-cycle management
- vGrid
 - portal based
- Other models
 - Intel Grid Programming Environment (GPE)
 - Virtual Workspaces
 - VM scheduling and propagation
 - Batch system customization
 - LSF
 - Torque / MOAB scheduler

Grid Programming Environment

- Easy to develop and deploy Grid application beans
- Service-oriented Architecture
 - Target systems
 - Job management
 - Storage management
 - File transfer
- Uses virtual machines for resource provisioning
- The only Grid middleware to offer full platform virtualization support

Complementary tool: OS Farm

Web interface:

Repository About Log Status Simple request Virtual Appliances request Advanced request									
OS Farm dynamically generates OS images, and "virtual appliances" for use with Xen VMs. To create an image, enter a name for the image and select a "Class" and software packages if needed. Click "Create image", and the image will be created and put in the <u>repository</u> . If you check the "Download image upon creation" checkbox, the image will be downloaded when the image creation is finished.									
If you do not enter a "Name", the image will be named after the md5 checksum of the image configuration parameters. If an image with the exact same parameters exists in the repository, it will not be recreated and can be downloaded immediately.									
If you want to use wget, then here is an example url: "http://www.cern.ch/osfarm/create?name=&download=on&class=SLC4&arch=i386&filetype=.tar&group=core&group=base&package=glite-BDII" Please allow a few minutes for the image to be created.									
Name									
Synchronous									
Class SLC4									
Architecture i386									
Filetype .tar									
Create Image									

+ SOAP web service interface

VM OS image Flavours

Base images

- Scientific Linux CERN 3 & 4 standard at CERN
- libfsimage basis for several flavours
 - Debian and Red Hat based distributions
- Virtual appliances
 - gLite Grid middleware
 - gLite-CE
 - gLite-WN
 - Quattor fabric management
- 32 and 64 bit images
- tar or raw (*.img) image format

Image staging

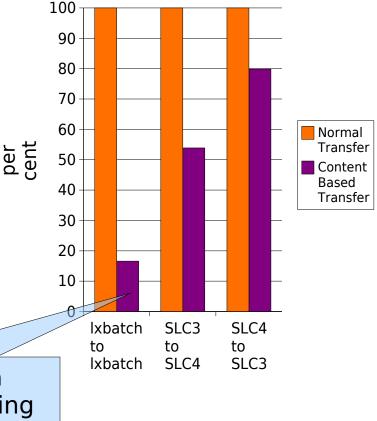
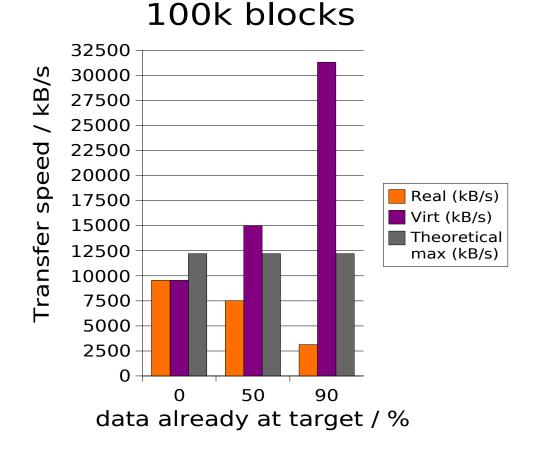
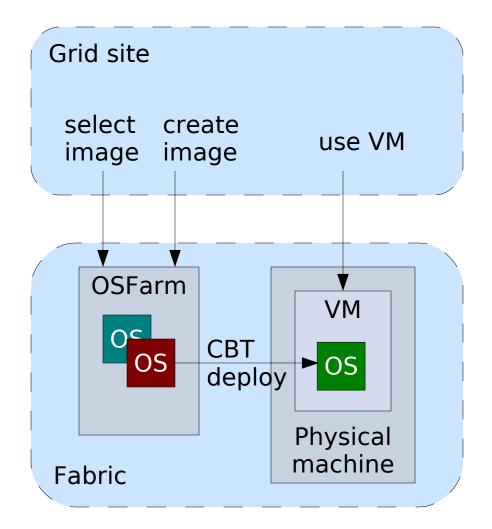

- OS images are big
 - ~ 300 MB to several GB
 - Jobs scheduled for a VM will have to wait for the image transfer to finish
 - Congests network
- Observation from Content-based Addressing
 - Most images are relatively similar
 - No need to transfer the whole image; just transfer the delta

Image comparisons

Two typical batch machines (5.3 GB) 84 % hot blocks SLC3 (343 MB) and SLC4 (762 per cent MB) SLC3 -> SLC4 48 % hot blocks SLC4 -> SLC3 22 % hot blocks Fraction of full image data needed to transfer, including hash table

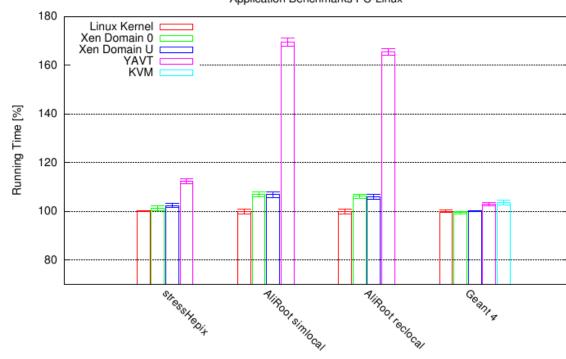

Total transfer


Measurements of CBT tool

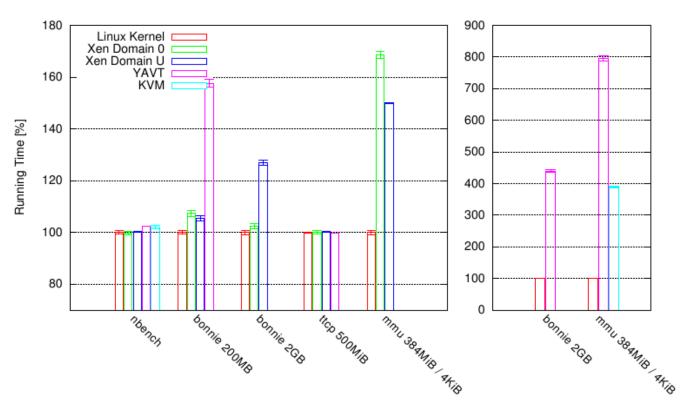
Virtual speed: full image size / time to transfer delta

In control over Grid VM images

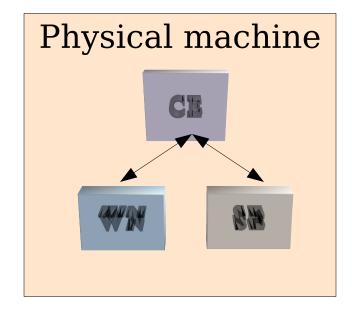
More information & Questions


- OS Farm
 - http://cern.ch/osfarm
- Content Based Transfer
 - http://hbjerke.web.cern.ch/hbjerke/cba/cba.xml

Backup



Application Benchmarks PC-Linux


Synthetic Benchmarks PC-Linux

Consolidation Example

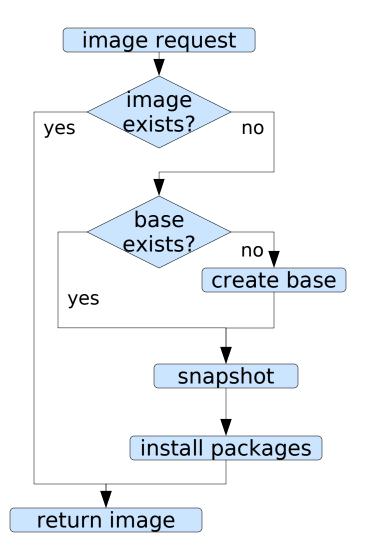
GRID-in-a-box

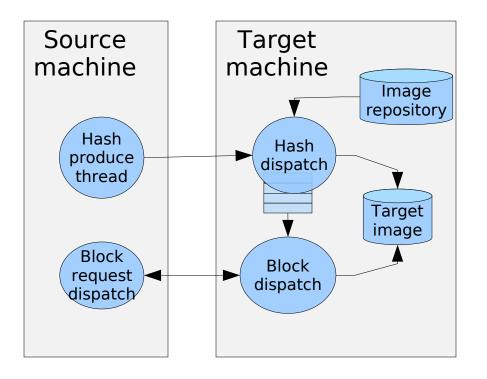
- Useful for testing or setting up proof of concept GRIDs
 - Regression testing
 - Network testing
 - Distributed application testing
 - Build testing

CERN virtualization use cases

LCG

- Smartfrog (HP)
 - Utility computing
 - Single component description for a whole virtual cluster
 - Deploy a complete site clean up afterwards
- Tycoon (HP)
- Health-e Child

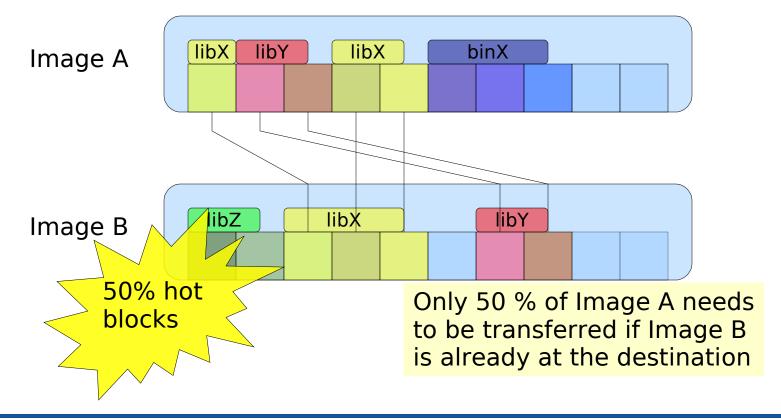

OS	OS Farm								
		Re	cository About	Log	Status Sir	mple request	Virtual Appl	liances request Advanced request	
Location	Name	Class	Architecture	Filetype	Groups	Packages			
download		SLC4	i386	.img			delete	Image configuration	
<u>download</u>	Test	SLC3	i386	.tar			<u>delete</u>	and image is	
<u>download</u>	SLC3	SLC3	i386	.img			<u>delete</u>	stored in repository	
<u>download</u>	sa301	SLC4	i386	.tar			<u>delete</u>	for later retrieval	
<u>download</u>	logo	SLC4	i386	.tar			<u>delete</u>		
download	test	SLC4	i386	.tar			<u>delete</u>	Image configuration is	
<u>download</u>		glite-ce	i386	.tar			<u>delete</u>	stored in XML format	
<u>download</u>		SLC4	x86_64	.tar			<u>delete</u>		
<u>download</u>	itmat	SLC4	x86_64	.tar			<u>delete</u>		
<u>download</u>	image1	SLC4	i386	.img			<u>delete</u>	Each configuration is	
<u>download</u>		quattor-base	e x86_64	.tar.gz			<u>delete</u>	checksummed and	
<u>download</u>		SLC4	i386	.img	core base	Э	<u>delete</u>	compared to existing	
<u>download</u>		SLC4	i386	.tar	core base	e glite-BDII	<u>delete</u>	configurations	
<u>download</u>		quattor-bas	e i386	.tar			<u>delete</u>	-> existing images	
<u>download</u>		SLC3	i386	.tar.gz	core base	Э	<u>delete</u>	are not recreated	
<u>download</u>		SLC3	i386	.img	core base	9	<u>delete</u>		


Copy-on-Write staging

 Images are created dynamically

- Base stages are kept in cache
- Uses LVM snapshots (copyon-write) for instantaneous staging

Content Based Transfer


- Multithreaded
- Hash calculation and data transfer pipelined
- Implemented in Java (+ a Python prototype)

Filesystems

Each file starts on a block boundary

 Identical blocks can be identified with a hash checksum

- Generating hash tables for source file and target repository
 - Linear
- Accessing hash tables
 - Java and Python have convenient constanttime hash tables
- Hash table data overhead
 - Depends on
 - hash function, e.g. SHA is 20 bytes
 - block size usually 4096 bytes
 - 0.48 to 2.0 % of the image size