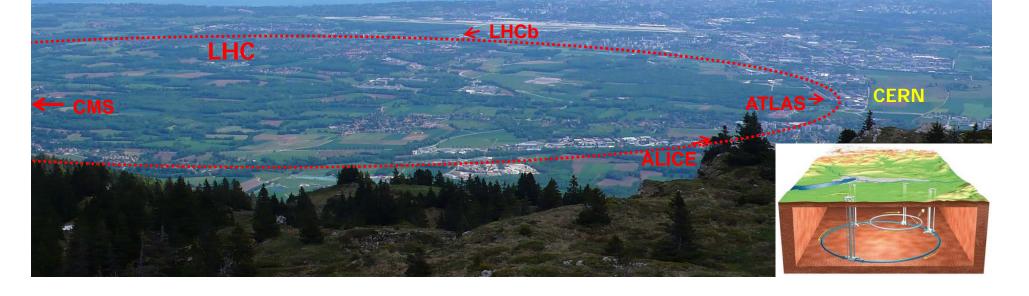

How to discover the Higgs Boson in an Oracle database

Maaike Limper



Large Hadron Collider at CERN

- The Large Hadron Collider is used to collide hadrons (protons or lead ions) at high energy, it is currently the world's most powerful particle accelerator
- Four main experiments placed along the ring study the events produced by the Large Hadron Collider: ATLAS, CMS, LHCb and ALICE

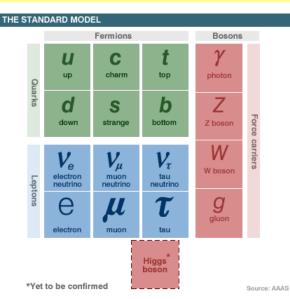
"CERN openlab is a unique public-private partnership between CERN and leading ICT companies. Its mission is to accelerate the development of cutting-edge solutions to be used by the worldwide LHC community" <u>http://openlab.web.cern.ch</u> In January 2012 I joined Openlab as an Oracle sponsored CERN fellow

<u>My project</u>: Investigate the possibility of doing LHC-scale data analysis within an Oracle database

Introduction

Some of the items I will discuss with you today:

- Data processing at CERN: how do we go from detector measurements to discovering new particles
- An example of a database structure containing analysis data
- An example of physics analysis code converted to SQL
- Using outside algorithms (C++/java) as part of the event selection
- Outlook: how to scale my studies to real LHC-scale data analysis

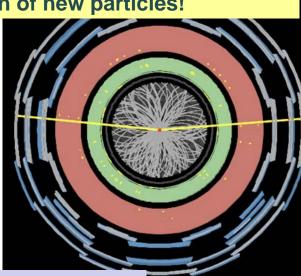

Disclaimer: any results shown today are for the purpose of illustrating my studies and are by no means to be interpreted as real physics results!

A quick course in Particle Physics

The Standard Model (SM) of particle physics, a very successful theory describing all the elementary particles and forces that are the building blocks of our world

- Leptons: electrons and muons, relatively easy to detect, the weapon of choice for many physics analysers! (tau's are tough)
- Neutrino's can not be detected directly

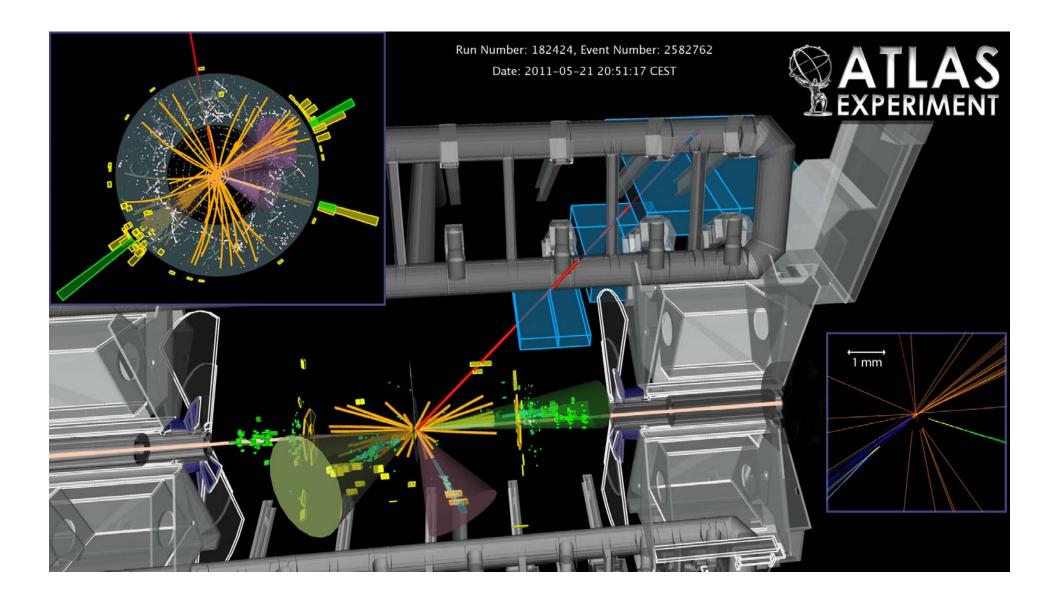
- Quarks: can not exist alone, but are bound together in pair or triplets
- Particles composed of quarks are called hadrons, for example, proton=two up plus one down quark
- Force carriers: photons for electro-magnetism, Z/W bosons for 'weak' interaction, gluons to bind quarks together and the Higgs boson to give mass to particles



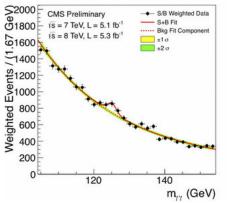
A quick course in Particle Physics

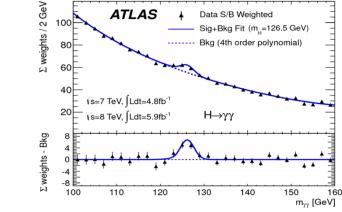
When the Large Hadron Collider collides protons at high energy the particles interact and the energy of the collision is converted into the production of new particles!

- The detectors built around the collision point measure the produced particles
- high energy quark production results in a 'jet' of particles seen in the detector
- energy resulting from a collision at the LHC is spread symmetrically, an imbalance in the energy measured by the detectors often indicate the presence of neutrino's in the event


Many particles decay before we can measure them! Instead we see these by their "invariant mass" calculated from the energy and momentum of the decay products

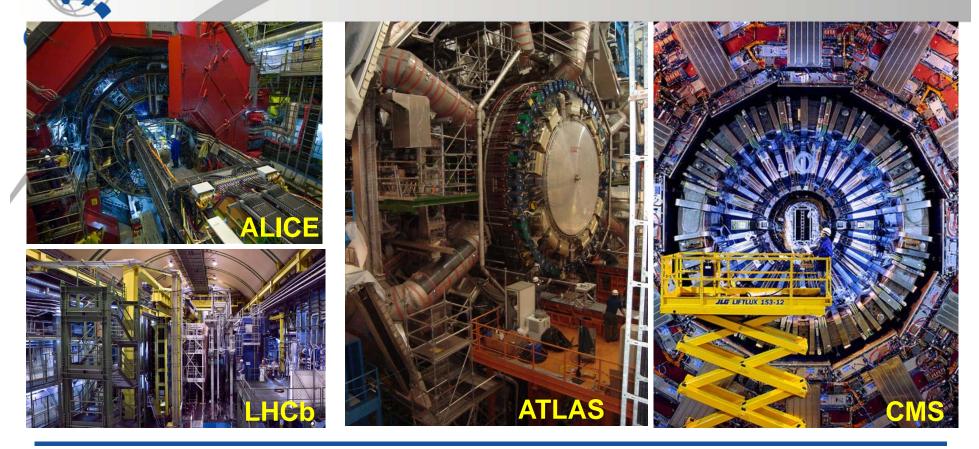
"Invariant mass" $Mc^2 = (\sum E)^2 + \|\sum \vec{p}c\|^2$

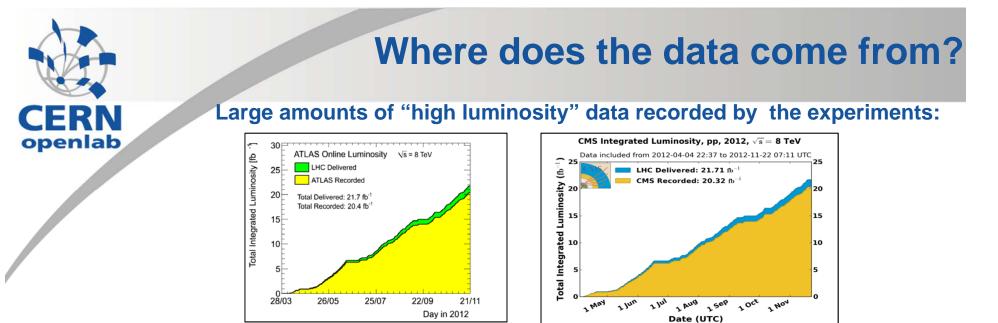

M=invariant mass, equal to mass of decay particle $\sum E$ =sum of the energies of produced particles $\|\sum \vec{pc}\|$ =vector sum of momenta of produced particles



Discovery of a "Higgs bosonlike" particle

Plots of the invariant mass of photon-pairs produced at the LHC show a significant bump around 125 GeV

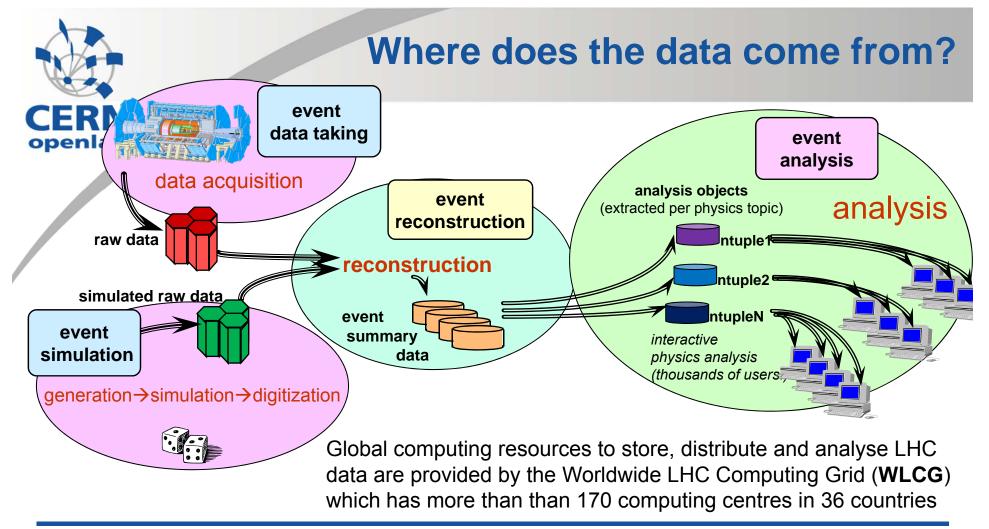



The discovery of a "Higgs boson-like" particle!

http://www.bbc.co.uk/news/world-18702455

- The work of thousands of people!
- Operations of LHC and its experiments rely on databases for storing conditions data, log files etc.
- ... but the data-points in these plots did not came out of a database !

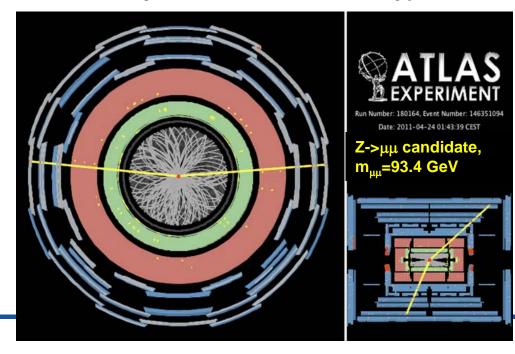
Where does the data come from?

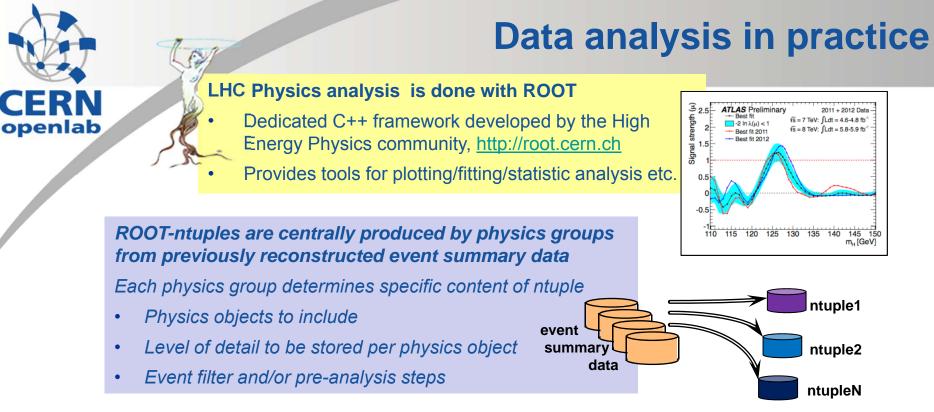


The LHC produces 40 million proton-proton collision events per second

Not all events are recorded, trigger electronics built into the detectors help determine which events are interesting enough to keep

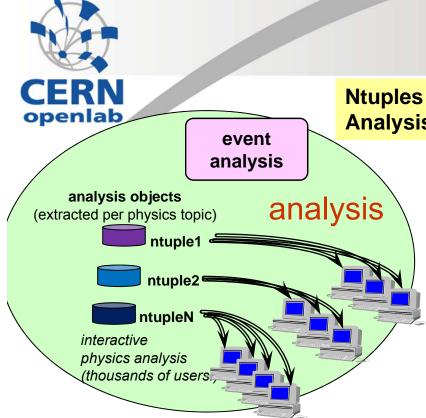
Some recent numbers from the ATLAS experiment in 2012:


- ~400 events recorded per second during an LHC run
- ~2 billion events recorded, ~2 PB of raw data, ~3 PB of Event Summary Data



CERN openlab

Analysis versus reconstruction


Event Reconstruction focuses on creating physics objects from the information measured in the detector **Event Analysis** focuses on interpreting information from the reconstructed objects to determine what type of event took place

Data is stored as a "TTree" object, with a "TBranch" for each variable

Variables for each event in the form of scalar (number of muons), vectors (energy of each muon), vector-of-vectors (position of each detector hit for each muon)

Data analysis in practice

Ntuples are centrally produced per physics topic Analysis is typically I/O intensive and runs on many files

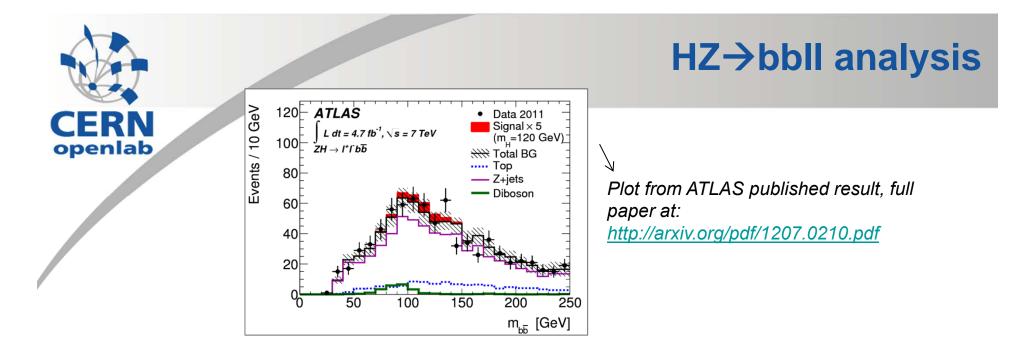
Small datasets → copy data and run analysis locally

Large datasets:→use the LHC Computing Grid

- Grid computing tools split the analysis job in multiple jobs each running on a subset of the data
- Each sub-job is sent to Grid site where input files are available
- Results produced summed at the end

Bored waiting days for all grid-jobs to finish→ Filter data and produce private mini-ntuples

Can we replace the ntuple analysis with a model where data is analysed from an Oracle database?


Data analysis in a database

Benchmark Physics Analysis in an Oracle DB:

- Simplified version of the HZ→bbll analysis (search for standard model Higgs boson produced in association with a Z-boson)
 - Select lepton-candidates to reconstruct Z-peak
 - Select b-jet-candidates to reconstruct Higgs-peak

Oracle database filled with data from two samples of simulated data:

- Signal sample: 30 k events (3 ntuples)
- Background sample (Z+2/3/4 jets): 1662 k events (168 ntuples)
- Use ntuple defined by ATLAS Top Physics Group: "NTUP_TOP"
 - 4212 physics attributes per event
 - Size of each ntuple is approx. 850 MB

For my studies I used simulation data produced for the <u>"HZ→bbll" analysis</u> "The search for SM Higgs boson produced in association with a Z-boson":

- A SM Higgs boson with a mass 125 GeV decays mainly to two b-quarks
- An event topology with only two b-jets has a large background from jet production
- If the Higgs boson is produced together with a Z-boson and the Z decays to leptons, the events are easier to detect and the background becomes significantly less

Currently implemented 1042 variables, divided over 5 different tables

Separate schema for each sample

Variable "EventNo_RunNo" uniquely defines each event Tables "eventData" and "MET" (missing transverse energy):

- One row of data for each event
- primaryKey=(EventNo_RunNo)

Tables "muon", "electron" and "jet":

- One row of data for each muon/electron/jet object
- primaryKey=(muonId/jetID/electronID,EventNo_RunNo),
- "EventNo_RunNo" is indexed

Physics Database implementation

Table statistics:

4					
	Table name	columns	k rows	k blocks	size in MB
	MET	56	30	2.15	17
	eventData	185	30	2.73	21
	muon	297	38	12.4	97
	electron	305	223	69.08	540
	jet	210	481	107.36	839

<u>Z->ll + 2/3/4 jets</u>

74 51166

Table name	columns	k rows	k blocks	size in MB
MET	56	1662	119.44	933
eventData	185	1662	151.13	1181
muon	297	1489	481	3758
electron	305	10971	3274.72	25584
jet	210	27931	5943.19	46431

Physics Analysis (1)

The goal of the analysis is to select signal events and removing as many background events as possible The ratio of signal over background events will determine the significance of your discovery!

My version of the HZ→bbll analysis

- MET selection: Missing tranverse energy in events less then 30 < GeV
- <u>electron selection</u>: "IsElectron"-function to return TRUE, include requirement p_T >20 GeV and $|\eta|<2.4$ plus several requirement on hits and holes on tracks
- <u>muon selection:</u> "IsMuon"-function to return TRUE, include requirement $p_T>20$ GeV and $|\eta|<2.4$ plus several requirement on hits and holes on tracks
- Require exactly 2 selected muons OR 2 selected electrons per event
- <u>**b-jet selection:**</u> tranverse momentum greater than $p_T>25$ GeV, $|\eta|<2.5$ and "flavour_weight_Comb">1.55 (to select b-jets)
- Require opening-angle between jets ΔR >0.7 when p_TH< 200 MeV
- Require exactly 2 selected b-jets per event
- Require 1 of the 2 b-jets to have p_T >45 GeV
- Plot "*invariant mass*" of the leptons (Z-peak) and of the b-jets (Higgs-peak)

My analysis uses a total of 40 different variables from "MET", "jet", "muon" and "electron" tables

Database versus ntuples

Two versions of my analysis:

- 1. Standard ntuple-analysis in ROOT (C++) using locally stored ntuples
 - load only the branches needed for the analysis to make the analysis as fast as possible
 - loop over all events and applies the selection criteria event-by-event
- 2. Analysis from the same data stored in the Oracle database using functions for invariant mass and lepton selection implemented in PL/SQL
 - Executes a single SQL-query performing the data analysis via TOracleServer-class in ROOT
 - Rows returned by the query via TOracleServer are used to produce histograms

Check that both methods produce the same result and see which is faster!

Physics Analysis (1) SQL (part 1)

With sel_MET_events as (select /*+ MATERIALIZE FULL("MET_LocHadTopo") */

"EventNo_RunNo","EventNumber","RunNumber" from "MET_LocHadTopo" where

PHYSANALYSIS.pass_met_selection("etx","ety") = 1),

sel_electron as (select /*+ MATERIALIZE FULL("electron") */ "electron_i","EventNo_RunNo","E","px","py","pz" from "electron" where PHYSANALYSIS.IS_ELECTRON("pt","eta","author","mediumWithTrack", 20000., 2.5) = 1),

sel_electron_count as (select "EventNo_RunNo",COUNT(*) as "el_sel_n" from sel_electron group by "EventNo_RunNo"), sel_muon as (select /*+ MATERIALIZE FULL("muon") */ "muon_i","EventNo_RunNo","E","px","py","pz" from "muon" where PHYSANALYSIS.IS_MUON("muon_i", "pt", "eta", "phi", "E", "me_qoverp_exPV", "id_qoverp_exPV","me_theta_exPV", "id_theta_exPV", "id_theta", "isCombinedMuon", "isLowPtReconstructedMuon","tight","expectBLayerHit", "nBLHits", "nPixHits","nPixelDeadSensors","nPixHoles","nSCTHits","nSCTDeadSensors","nSCTHoles","nTRTHits","nTRTOutliers",0,20000., 2.4) = 1),

sel_muon_count as (select "EventNo_RunNo",COUNT(*) as "mu_sel_n" from sel_muon group by "EventNo_RunNo"), sel_mu_el_events as (select /*+ MATERIALIZE */ "EventNo_RunNo","el_sel_n","mu_sel_n" from sel_MET_events LEFT OUTER JOIN sel_electron_count USING ("EventNo_RunNo") LEFT OUTER JOIN sel_muon_count USING ("EventNo_RunNo") where ("el_sel_n"=2 and "mu_sel_n" is NULL) or ("el_sel_n" is NULL and "mu_sel_n"=2)),

List of selection criteria translates into a set of select statements defined as temporary tables

Without MATERIALIZE hint, query optimizer gets confused...

JOIN is used to combine information from different tables

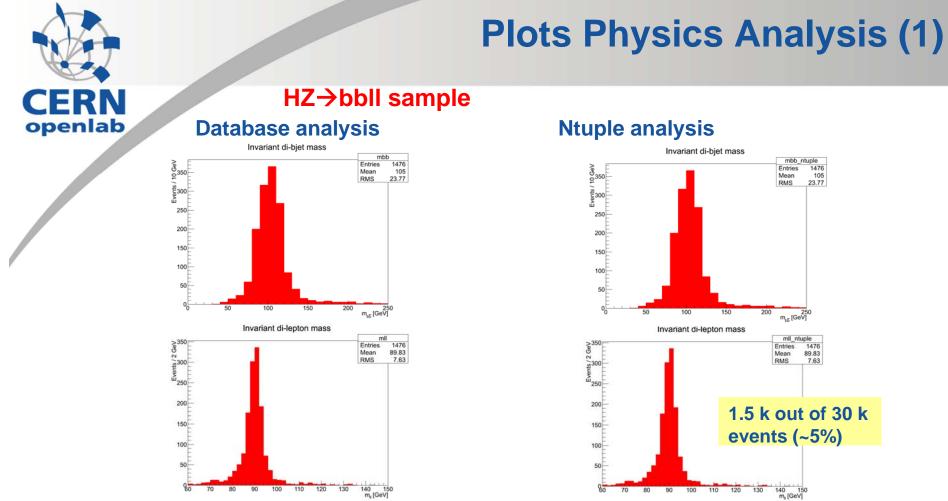
FULL table scan is usually fastest, I'll come back to that later...

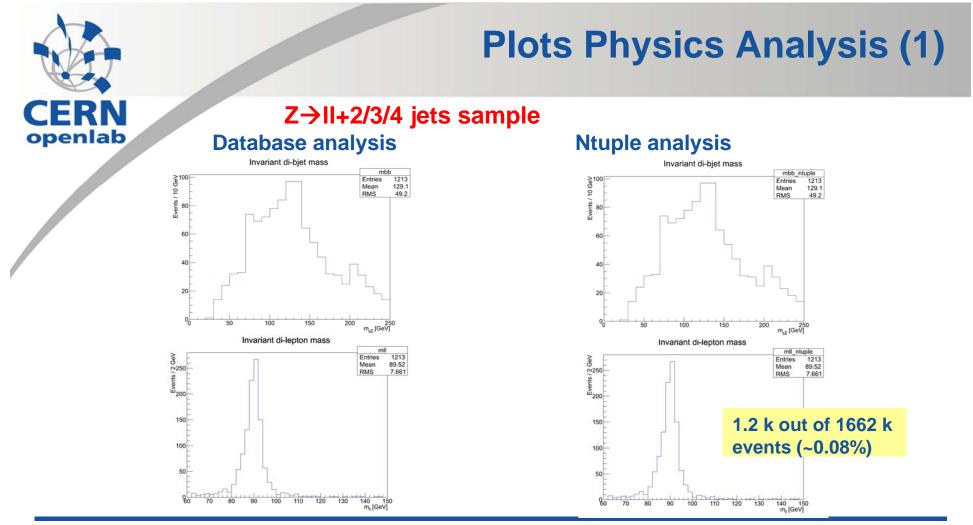
Physics Analysis (1) SQL (part 2)

sel_electron_events as (select /*+ MATERIALIZE */

"EventNo_RunNo",PHYSANALYSIS.INV_MASS_LEPTONS(el0."E",el1."E",el0."px",el1."px",el0."py",el1."py",el0."pz",el1."pz")/100 0. as "DiElectronMass" from sel_mu_el_events INNER JOIN sel_electron el0 USING ("EventNo_RunNo") INNER JOIN sel_electron el1 USING ("EventNo_RunNo") where el0."electron_i"<el1."electron_i"), sel_muon_events as (select /*+ MATERIALIZE */ "EventNo_RunNo",PHYSANALYSIS.INV_MASS_LEPTONS(muon0."E",muon1."E",muon0."px",muon1."px",muon0."py",muon1."py

",muon0."pz",muon1."pz")/1000. as "DiMuonMass " from sel_mu_el_events INNER JOIN sel_muon muon0 USING ("EventNo_RunNo") INNER JOIN sel_muon muon1 USING ("EventNo_RunNo") where muon0."muon_i"<muon1."muon_i"), sel_jet as (select /*+ MATERIALIZE FULL("jet") */ "jet_i","EventNo_RunNo","E","pt","phi","eta" from "jet" where "pt">25000. and abs("eta")<2. 5 and "fl_w_Comb">1.55),


sel_jet_count as (select "EventNo_RunNo" from sel_jet group by "EventNo_RunNo" HAVING MAX("pt")>45000. and COUNT(*) = 2), sel_jet_events as (select /*+ MATERIALIZE */


"EventNo_RunNo",PHYSANALYSIS.INV_MASS_JETS(jet0."E",jet1."E",jet0."pt",jet1."pt",jet0."phi",jet1."phi",jet0."eta",jet1."eta")/10 00. as "DiJetMass" from sel_jet_count INNER JOIN sel_jet jet0 USING ("EventNo_RunNo") INNER JOIN sel_jet jet1 USING ("EventNo_RunNo") where jet0."jet_i"<jet1."jet_i" and

PHYSANALYSIS.pass_bjet_pair_selection(jet0."pt"/1000.,jet1."pt"/1000.,jet0."phi",jet1."phi",jet0."eta",jet1."eta") = 1)

Select "EventNo_RunNo", "EventNumber", "RunNumber", "DiMuonMass", "DiElectronMass", "DiJetMass" from sel_muon_events FULL OUTER JOIN sel_electron_events USING ("EventNo_RunNo") INNER JOIN sel_jet_events USING ("EventNo_RunNo") INNER JOIN sel_MET_events USING ("EventNo_RunNo")

The final select-statement returns the invariant mass of the leptons and jets

Timing Physics Analysis (1)

Timing results done after clearing caches for more consistent results ntuple: sync && sysctl -w vm.drop_caches=3 DB: alter system flush buffer_cache; alter system flush shared_pool Database runs on the same machine as the root ntuple analysis Ntuple-files are stored in the same disk-space as database-files

ZH→IIbb sample:		
Ntuple analysis:	12 seconds	For the large background
Database analysis:	18 seconds	sample the analysis from
Z→II + jets sample:		the database is faster than
Ntuple analysis:	508 seconds	the ntuples analysis!
Database analysis:	333 seconds	

SQL monitoring Physics Analysis (1) ZH→IIbb

rerview											
SQL ID f33wh0suyvnhz 1 Time & W	ait Statistics						IO Statistics				
	uration		_		16.0s		Buffer Gets				
st Refresh Time Wed Nov 21, 2012 2:31:56 PM Database	Time					7.2s					23
Execution ID 33554432 User NTUP_TOP_ZH110LLBB PL/SQL	& Java 1.5s						IO Requests	1,594			
Fetch Calls 2 Wait Acti						00	IO Bytes				10
tails						_					
Plan Statistics 🖧 Plan 📐 Activity 🔀 Metrics											
n Hash Value 69048297										𝗭 TIP: Right mouse click on the ta	ble allows to toggle between IO Requests and
ration	Name	Estimated Rows	Cost	Timeline(16s)	Exec	tions	Actual Rows	Memory (M	Temp (Max) IO Requests	CPU Activity %	Wait Activity %
SELECT STATEMENT					-	1	1,476				
E TEMP TABLE TRANSFORMATION					-	1	1,476				
LOAD AS SELECT				-		1	1	529KB			
TABLE ACCESS FULL	MET_LocHadTopo	300	591	-		1	22K				
LOAD AS SELECT				_		1	1	529KB	2		
TABLE ACCESS FULL	electron	2,232	19K			1	15K		95		20 36
- LOAD AS SELECT				_		1	1	529KB	6		
TABLE ACCESS FULL	muon	377	3,382			1	17K		113		18
				-		1	1	269KB	1		
E LOAD AS SELECT				_		1	1	269KB	1		20
E LOAD AS SELECT						1	1	269KB	1		
				-		-					
- LOAD AS SELECT				-	_	1	1	529KB	10		
B LOAD AS SELECT	jet	2,074	29К		=	1	1 31K	529KB	10	841	20
B LOAD AS SELECT B LOAD AS SELECT B LOAD AS SELECT	jet	2,074	29К		Ξ.	1 1 1	1 31K 1	529КВ 529КВ	4	841	20

CPU: 4.5 s IO-wait: 14.2 s **PL/SQL: 1.3 s**

25

SQL monitoring Physics Analysis (1) Z→II+jets

Monitored SQL Execution Details

erview										
	e & Wait Statistics					I0 Statistics				
ecution Started Wed Nov 21, 2012 2:39:22 PM t Refresh Time Wed Nov 21, 2012 2:44:53 PM	Duration		_		5.5m	Buffer Gets				1
Execution ID 33554433	Database lime				6.1m	IO Requests				
	/SQL & Java 23.1s					IO Bytes				7
Fetch Calls 2	ait Activity %				100	10 bytes				
ails										
Plan Statistics 📐 Activity 🔀 Metrics										
Hash Value 3582997418								ď	TIP: Right mouse click on the tab	le allows to toggle between IO Requests and I
ration	Name	Estimated Rows	Cost Tin	eline(331s)	Executions	Actual Rows Me	emory (M	Temp (Max) IO Requests	CPU Activity %	Wait Activity %
SELECT STATEMENT					1 1	1,213				
TEMP TABLE TRANSFORMATION					1	1,213				
LOAD AS SELECT			-		1	1	529KB	64	.88	
TABLE ACCESS FULL	MET_LocHadTopo	17K	ззк 🗖		1	1,344K		417	6.19	2.76
LOAD AS SELECT			-		1	1	529KB	164	1.77	
TABLE ACCESS FULL	electron	110K	891K -		1	704K		26К		50 26
E-LOAD AS SELECT				-	1	1	529KB	174		
TABLE ACCESS FULL	muon	15K	131K	-	1	757K		3,964	13	7.83
E LOAD AS SELECT				1	1	1	529KB	27		
				1	1	1	529KB	32	.88	
-LOAD AS SELECT					1	1	529KB	23	.88	
D LOAD AS SELECT										
T					1	1	529KB	47		
LOAD AS SELECT	jet	3,773	1,616K	_	1	1 189К	529KB	47 46K	20	
D LOAD AS SELECT	jet	3,773	1,616K		1	1 189К 1	529КВ 529КВ		20	

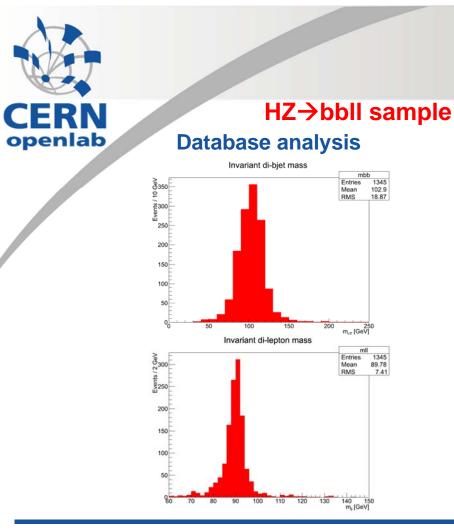
CPU: 154.1 s IO-wait: 231.3 s PL/SQL: 24.6 s 🕂 Save 🖾 Mail 民

Physics Analysis (2)

Add an additional complication to the analysis:

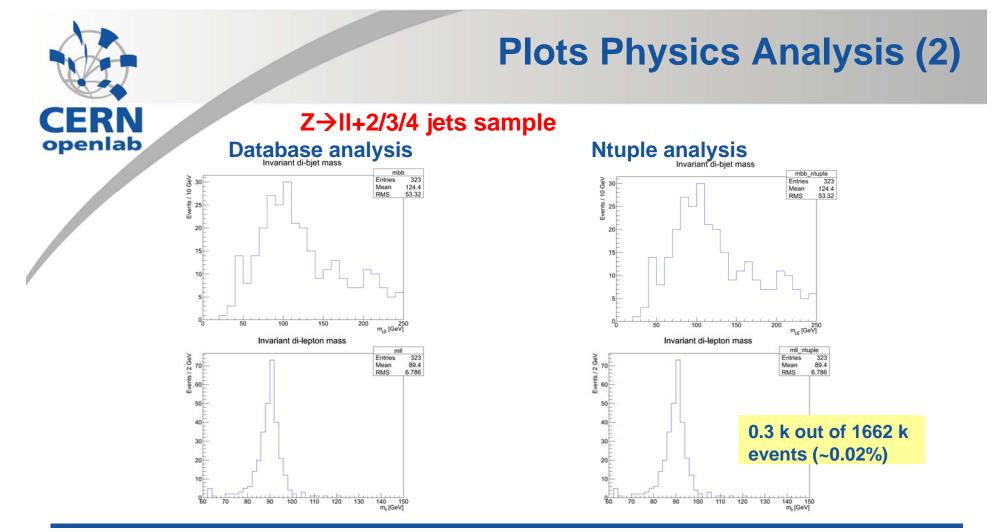
- Changed b-jet selection: recalculate the jet "flavour weight" for a better b-tagging performance
- "flavour_weight_Comb">1.55 is now: mv1Eval(flavour_weight_IP3D, flavour_weight_SV1, flavour_weight_jetFitterCombNN, pt, eta)>0.60173

"mv1Eval": a neural-network based algorithm that combines the output of different b-tagging weights to calculate an optimized b-tagging weight → C++ code from the ATLAS experiment


I'm too lazy/stupid to rewrite this algorithm in PL/SQL ...

MV1 algorithm was written in C++, I can compile it and call it as an external:

FUNCTION mv1Eval_fromExternal(w_IP3D double precision, w_SV1 double precision, w_JetFitterCombNN double precision, jet_pt double precision, jet_eta double precision) return double precision


AS EXTERNAL library "MV1_lib" name "mv1Eval" language c parameters (w_IP3D double, w_SV1 double, w_jetFitterCombNN double, jet_pt double, jet_eta double);

And it works, no problem! plots on following slides

Plots Physics Analysis (2)

Ntuple analysis Invariant di-bjet mass mbb_ntuple Entries 1345 Mean 102.9 B350 10 RMS 18.87 Lvents / 250 200 150 100 50 250 m_{t5} [GeV] Invariant di-lepton mass mll_ntuple Entries 1345 Mean 89.78 Ø300 RMS 7.41 \$250 200 1.3 k out of 30 k 150 events (~4%) 100 90 100 110 120 130 140 150 m, [GeV] 70 80

Timing Physics Analysis (2)

/	ZH→IIbb sample:	mv1Eval	(external)	fl_w_Comb>1.5	5			
	Ntuple analysis:	15 s		12 s				
	Database analysis:	21 s		18 s				
	Z → II + jets sample:							
	Ntuple analysis:	549 s		508 s				
	Database analysis:	583 s		333 s				
		The database analysis time by adding the us from an external C lib						

To test the cause of this delay, I created a test-query that only does the "jet"-part of the analysis and which separates the mv1Eval selection

Test-query: Jet-only selection

with sel_jet as (select /*+ MATERIALIZE FULL("jet") */ "jet_i","EventNo_RunNo","E","pt","phi","eta","fl_w_IP3D", "fl_w_SV1", "fl_w_JetFitterCOMBNN" from "jet" where "pt">25000. and abs("eta")<2.5),

sel_bjet as (select /*+ MATERIALIZE */ "jet_i","EventNo_RunNo","E","pt","phi","eta" from sel_jet where

MV1.mv1Eval_fromExternal("fl_w_IP3D","fl_w_SV1","fl_w_JetFitterCOMBNN","pt","eta")>0.60173),

sel_jet_count as (select "EventNo_RunNo" from sel_bjet group by "EventNo_RunNo" HAVING MAX("pt")>45000. and COUNT(*) = 2)

select "EventNo_RunNo",

PHYSANALYSIS.INV_MASS_JETS(jet0."E",jet1."E",jet0."pt",jet1."pt",jet0."phi",jet1."phi",jet0."eta",jet1."eta")/1000. as "DiJetMass" from sel_jet_count INNER JOIN sel_jet jet0 USING ("EventNo_RunNo") INNER JOIN sel_jet jet1 USING ("EventNo_RunNo") where jet0."jet_i"<jet1."jet_i" and

PHYSANALYSIS.pass_bjet_pair_selection(jet0."pt"/1000.,jet1."pt"/1000.,jet0."phi",jet1."phi",jet0."eta",jet1."eta") = 1;

The query separates the jet-selection into two parts, the second part calls the external function

SQL monitoring Di-jet-mass select Z→II+jets

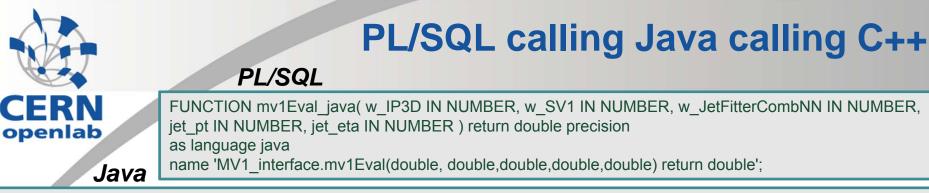
rview										_
SQL ID b8qumpzrjp026 i	Time & Wait Statist	tics				IO Statisti	ics			
Execution Started Thu Nov 15, 2012 5:33:30 PM	Duration				8.5m	Buffer G				6,168K
ast Refresh Time Thu Nov 15, 2012 5:42:01 PM	Database Time			6.6m						6,168K
Execution ID 33554432 User NTUP_TOP_ZNP0_5	PL/SQL & Java	3.4s					ests 🔜 4	9K		
Fetch Calls 202	Wait Activity %	_			100	IO By	ytes			46GB
										,
etails										
🗐 Plan Statistics 📴 Plan 📐 Activity 🖳 Metrics										
an Hash Value 753856098							🗭 TIP: Rig	ht mouse click on the	table allows to toggle betv	veen IO Requests and IO Bytes
peration	Name	Estimated	Cost Timeline(511s)	Execu	Actual	Memor	Temp (IO Requests	CPU Activity %	Wait Activity %
SELECT STATEMENT				1	20K				2.25	
ETEMP TABLE TRANSFORMATION				1	20K					
E LOAD AS SELECT			_	1	1	529KB		1,701	6.74	1.49
TABLE ACCESS FULL	jet	266K	1,613K	1	4,317K			46К	38	90
-LOAD AS SELECT				1	1	529KB		26		
-VIEW		266K	896	First Ac	ive: 163s; [ouration: 343	35		46	.75
TABLE ACCESS FULL	SYS_TEMP_0FD9FCD	7 266К	896	1	4,317K			432	2.25	8.21
-HASH JOIN		1	2,960	1	20K	2MB			3.37	
-HASH JOIN		133	2,062	1	12K	1MB			1.12	
		133	1,163	1	2,921					
FILTER				1	2,921					
HASH GROUP BY		133	1,163	1	97K	ЗМВ	змв	40		
		266K	1,149	1	101K					
-VIEW	SYS_TEMP_0FD9FCD	7 266К	1,149	1	101K			7		
	010_1002000100							160	c for the	e full table
		266K	896	1	4,317K			100	5 101 110	z iuli lapie
TABLE ACCESS FULL	SYS_TEMP_OFD9FCD		896 896	1	4,317K 4,317K					
TABLE ACCESS FULL				t t t						1Eval_fro

External library functions continued

Note: if I replace the MV1-algorithm with a function that does "return 1." the time to process all the rows is still >300 seconds

The "mv1Eval"-function is being called for every row via the external procedure agent ("extproc")

The agents runs in its own private address space and exchanges input/output parameters between the oracle process and the external library code using IPC


The IPC overhead is (far) higher than the actual cost of the calculation!

Solution is using Java!

Java provides a controlled environment executed within the same process and address space as the oracle process

I'm still too lazy/stupid to rewrite the C++ algorithm in Java...

So I tried to call my C++ library using JNI from Java !

public class MV1_interface {

public native static double mv1Eval(double fl_w_IP3D, double fl_w_SV1, double fl_w_JetFitterCOMBNN, double pt, double eta); static{ System.loadLibrary("MV1_interface.so");} }

C-interface calling C++

JNIEXPORT jdouble JNICALL Java_MV1_1interface_mv1Eval

(JNIEnv *, jclass, jdouble w_IP3D, jdouble w_SV1, jdouble w_JetFitterCombNN, jdouble jet_pt, jdouble jet_eta){

double value = mv1Eval(w_IP3D, w_SV1, w_JetFitterCombNN, jet_pt, jet_eta);

return value; }

Set permission to load library!

exec dbms_java.grant_permission('MLIMPER','SYS:java.lang.RuntimePermission','loadLibrary.MV1_interface.so',");

And it works! All the (pre-selected) rows of the "jet"-table are processed in 70 seconds instead >300 seconds

SQL monitoring Di-jet-mass select Z→II+jets

Monitored SQL Execution Details 🥪

Over	view											_
	SQL ID f1bsk9fhntsww 🕕	Time & Wait Statistics						IO Statisti	CS			
	cution Started Mon Nov 19, 2012 4:24:53 PM	Duration				5.	2m	Duffer C				6 000K
Last	Refresh Time Mon Nov 19, 2012 4:30:05 PM	Database Time					5.5m	Buffer G				6,238K
	Execution ID 33554434 User NTUP TOP ZNP0 5	PL/SQL & Java	1.4	łm				IO Reque	ests 🔜	53K		
	Fetch Calls 3285	Wait Activity %					100	IO By	tes			47GB
Deta	ile			_		_						
PI	an Statistics 🛱 Plan 📐 Activity 🧮 Metrics											
Plan F	lash Value 753856098								🕑 TIP: R	ght mouse click on the	table allows to toggle betwe	en IO Requests and IO Bytes
Opera	ation	Name	Estimate	Cost	Timeline(312s)	Exec	Actual	Memor	Temp (IO Requests	CPU Activity %	Wait Activity %
	SELECT STATEMENT				_	1	328K				18	
E	- TEMP TABLE TRANSFORMATION				_	1	328K					
	- LOAD AS SELECT					1	1	529KB		1,708	2.37	
	-TABLE ACCESS FULL	jet	266K	1,613		1	4,317K			46К	25	95
	- LOAD AS SELECT					1	1	529KB		1,056	2.96	
			266K	896	First	Active: 1	81s; Durat	on:71s			36	
	TABLE ACCESS FULL	SYS_TEMP_0FD9FCE2	266K	896		1	4,317K			432	1.18	1.45
	E-HASH JOIN		1	2,960	_	1	328K	81MB			9.47	
	- HASH JOIN		133	2,062	1	1	665K	18MB				
	D-VIEW		133	1,163	1	1	333K					
	E FILTER				1	1	333K				.59	
	HASH GROUP BY		133	1,163		1	1,595K	31MB	159MB	2,540	2.37	2.17
			266K	1,149	1	1	4,317K					
	TABLE ACCESS FULL	SYS_TEMP_0FD9FCE2	266K	1,149		1	4,317K			264	.59	1.45
	D-VIEW		266K	896	i.	1	4,317K					
	TABLE ACCESS FULL	SYS_TEMP_0FD9FCE2	266K	896	1	1	4,	~ 1	~			
			266K	896	_	1	4, 1	81 5	s tor	the ful	I table so	can
	TABLE ACCESS FULL	SYS_TEMP_0FD9FCE2	266K	896		1	4,	1	c			1
								1 S '	ror r	nvieva	al from ".	Java

Timing Physics Analysis (2)

2	ZH→IIbb sample:	mv1Eval_java	mv1Eval (external)	fl_w_Comb>1.55
	Ntuple analysis:	15 s	15 s	12 s
	Database analysis:	19 s	<mark>21</mark> s	<mark>18</mark> s
	Z → II + jets sample:			
	Ntuple analysis:	549 s	549 s	508 s
	Database analysis:	359 s	<mark>583</mark> s	333 s

Now running on the Z+jets sample from the database is faster again!

Finally I'll show how I tried to improve the DB performance by changing my query:

- pre-select events passing the jet-pair criteria
- access the other tables using the index on EventNo_RunNo, so that only those rows that passed the jet-criteria have to be processed

SQL using index scan after jet-select (part 1)

with sel jet as (select /*+ MATERIALIZE FULL("jet") */ "jet i","EventNo RunNo","E","pt","phi","eta" from "jet" where "pt">25000. and abs("eta")<2.5 and MV1.mv1Eval_java("fl w IP3D","fl w SV1","fl w JetFitterCOMBNN","pt","eta")>0.60173), sel_jet_count as (select "EventNo RunNo" from sel jet group by "EventNo RunNo" HAVING MAX("pt")>45000. and COUNT(*) = 2), sel_jet_events as (select /*+ MATERIALIZE */ "EventNo RunNo", PHYSANALYSIS.INV MASS JETS (jet0."E", jet1."E", jet0."pt", jet1."pt", jet0."phi", jet1."phi", jet0."eta", jet1."eta")/1 000. as "DiJetMass" from sel jet count INNER JOIN sel jet jet0 USING ("EventNo RunNo") INNER JOIN sel jet jet1 USING ("EventNo RunNo") where jet0."jet i"<jet1."jet i" and PHYSANALYSIS.pass bjet pair selection(jet0."pt"/1000.,jet1."pt"/1000.,jet0."phi",jet1."phi",jet0."eta",jet1."eta") = 1), sel_electron as (select /*+ MATERIALIZE */ "electron i","EventNo RunNo","E","px","py","pz" from "electron" INNER JOIN sel jet events USING ("EventNo RunNo") where PHYSANALYSIS.IS ELECTRON("pt","eta","author","mediumWithTrack", 20000., 2.5) = 1), sel_electron_count as (select "EventNo RunNo", COUNT(*) as "el sel n" from sel electron group by "EventNo RunNo"), sel_muon as (select /*+ MATERIALIZE */ "muon i","EventNo RunNo","E","px","py","pz" from "muon" INNER JOIN sel jet events USING ("EventNo RunNo") where PHYSANALYSIS.IS MUON("muon i", "pt", "eta", "phi", "E", "me goverp exPV", "id goverp exPV", "me_theta_exPV", "id_theta_exPV", "id_theta", "isCombinedMuon", "isLowPtReconstructedMuon","tight","expectBLayerHit", "nBLHits", "nPixHits","nPixelDeadSensors", "nPixHoles", "nSCTHits","nSCTDeadSensors", "nSCTHoles", "nTRTHits", "nTRTOutliers",0,20000.,2.4) = 1), sel muon count as (select "EventNo RunNo", COUNT(*) as "mu sel n" from sel_muon group by "EventNo_RunNo"),

Query same as before, but removed FULL table scan hints for electron, muon and MET selection (and jet-selection first)

SQL using index scan after jet-select (part 2)

sel_mu_el_events as (select /*+ MATERIALIZE */ "EventNo RunNo","el sel n","mu sel n" from sel jet events LEFT OUTER JOIN sel electron count USING ("EventNo RunNo") LEFT OUTER JOIN sel muon count USING ("EventNo RunNo") where ("el sel n"=2 and "mu sel n" is NULL) or ("el sel n" is NULL and "mu sel n"=2)), sel electron events as (select /*+ MATERIALIZE */ "EventNo RunNo", PHYSANALYSIS.INV MASS LEPTONS(el0."E", el1."E", el0."px", el1."px", el0."py", el1."py", el0."pz", el1."pz")/10 00. as "DiElectronMass" from sel mu el events INNER JOIN sel electron el0 USING ("EventNo RunNo") INNER JOIN sel electron el1 USING ("EventNo RunNo") where el0."electron i" <el1."electron i"), sel muon events as (select /*+ MATERIALIZE */ "EventNo RunNo", PHYSANALYSIS.INV MASS LEPTONS (muon0."E", muon1."E", muon0."px", muon1."px", muon0."py", muon1." py",muon0."pz",muon1."pz")/1000. as "DiMuonMass" from sel mu el events INNER JOIN sel muon muon0 USING ("EventNo RunNo") INNER JOIN sel muon muon1 USING ("EventNo RunNo") where muon0."muon i"<muon1."muon i"), sel MET events as (select /*+ MATERIALIZE */ "EventNo RunNo","EventNumber","RunNumber" from "MET LocHadTopo" INNER JOIN sel mu el events USING ("EventNo RunNo") where PHYSANALYSIS.pass met selection("etx", "ety") = 1) select "EventNo RunNo", "EventNumber", "RunNumber", "DiMuonMass", "DiElectronMass", "DiJetMass" from sel muon events FULL OUTER JOIN sel electron events USING ("EventNo RunNo") INNER JOIN sel jet events USING ("EventNo RunNo") INNER JOIN sel MET events USING ("EventNo RunNo")

> Query same as before, but removed FULL table scan hints for electron, muon and MET selection (and jet-selection first)

SQL monitoring ng index scan, Z→II+jets

Ionitored SQL Execution Details 🥑								LIGIN		
Overview								uSII	IQ II	ndex
SQL ID 574kx786ptd0w i	Time & Wait Statistics						IO Statistic	cs		
Execution Started Wed Nov 21, 2012 3:21:02 PM	Duration					4.1m	Buffer G	ata		5,979K
ast Refresh Time Wed Nov 21, 2012 3:25:07 PM	Database Time				_	4.2m				5,979K
Execution ID 33554432 User NTUP_TOP_ZNP0_5	PL/SQL & Java	1.0	m				IO Reque			
Fetch Calls 1	Wait Activity %		_		_	100	IO By	tes		46GB
Details										-
ற Plan Statistics 🖉 Plan 📐 Activity 🔀 Metrics										
Plan Hash Value 2979437015								𝗭 TIP: Right mouse click on th		
Operation	Name	Estimate	Cost	Timeline(245s)			Memor	Temp (IO Requests	CPU Activity %	Wait Activity %
SELECT STATEMENT					1	323				
E TEMP TABLE TRANSFORMATION					1	323				
E LOAD AS SELECT					1	1	529KB	25		
- TABLE ACCESS FULL	jet	13K	1,616		1	101K		46K	9	9 81
E LOAD AS SELECT				1	First Act	ive: 2s; Du	ration: 224s	2	.75	
LOAD AS SELECT				-	1	1	269KB	1		
I NESTED LOOPS				-	1	788				
RESTED LOOPS		1	8		1	28K				
		1	2	-	1	2,686				
TABLE ACCESS FULL	SYS_TEMP_0FD9FD01	1	2	-	1	2,686		1		
-INDEX RANGE SCAN	IX_EL_EVENTNO_RUNI	7	2	-	5,423	28K		4,897		1.82
TABLE ACCESS BY INDEX ROWID	electron	1	6	-	54K	788		11К		14
E-LOAD AS SELECT					1	1	269KB	1		
- NESTED LOOPS					1	834				
- NESTED LOOPS		1	6		1	2,389				
-VIEW		1	2		1	2,686				
TABLE ACCESS FULL	SYS_TEMP_0FD9FD01	1	2		1	2,686				
-INDEX RANGE SCAN	IX_MU_EVENTNO_RUN	2	2		4,739	2,389		3,204		2.73
TABLE ACCESS BY INDEX ROWID	muon	1	4		4,768	834		439		
LOAD AS SELECT					1	1	269KB	1	Duret	ion 24E c
LOAD AS SELECT					1	1	269KB	1	Durat	ion 245 s
LOAD AS SELECT					1	1	269KB	1	Muren	
LOAD AS SELECT					1	1	269KB	1	wuon	/Electron
					1	323			factor	
		1	4		1	503			taster	when us
D VIEW		1	2		1	503				
TABLE ACCESS FULL	SYS_TEMP_0FD9FD01	1	2		1	503			taster	after jet
INDEX UNIQUE SCAN	SYS_C004042	1	1		1,003	503		881		.91
TABLE ACCESS BY INDEX ROWID	MET_LocHadTopo	1	2		1,003	323		106		
		1			1,005	323	17MB			
ELIYOU YOUR		1	9		1	323	17 MB			

Duration 245 seconds (was 359) Muon/Electron selection significantly faster when using access by index faster after jet pre-selection!

SQL monitoring using index scan. $ZH \rightarrow IIbb$ onitored SQL Execution Details 🥑 Overview SQL ID 574kx786ptd0w ① Time & Wait Statistics IO Statistics Execution Started Wed Nov 21, 2012 4:01:49 PM Duration Buffer Gets 160K Last Refresh Time Wed Nov 21, 2012 4:03:42 PM Database Time Execution ID 33554433 IO Requests 44K PL/SQL & Java 🔜 2.4s openla User NTUP_TOP_ZH110LLBB IO Bytes Fetch Calls 2 Wait Activity % Details 🔄 Plan Statistics 🥳 Plan 📐 Activity 🎘 Metrics Plan Hash Value 3207777499 & TIP: Right mouse click on the table allows to toggle between IO Requests and IO Bytes Operation Cost Timeline(113s) Exec... Actual ... Memor.. Temp (... IO Requests CPU Activity % Estimate... Wait Activity % Name -SELECT STATEMENT 1 1,345 E TEMP TABLE TRANSFORMATION 1 1,345 1 1 529KB 5 TABLE ACCESS FULL 1,183 29K 💻 1 29K 385 jet 9.18 . E LOAD AS SELECT 1 1 269KB 3 7.14 E LOAD AS SELECT 1 269KB 1 1 First Active: 13s; Duration: 33s - NESTED LOOPS -NESTED LOOPS -54K 1 7 1 E-VIEW 2 1 6,146 1 TABLE ACCESS FULL SYS TEMP OFD9FD02 . 2 1 6,116 1 INDEX RANGE SCAN IX EL EVENTNO RUN 2 7,814 54K 1,531 5.1 -TABLE ACCESS BY INDEX ROWID electron 1 5 100K 3,129 16K LOAD AS SELECT 1 1 269KB 1 HINESTED LOOPS 1 3,613 FI NESTED LOOPS 1 7,918 2 1 6,146 1 TABLE ACCESS FULL SYS_TEMP_0FD9FD02 . 1 6,146 INDEX BANGE SCAN IX_MU_EVENTNO_RUN 2 6,982 7,918 1,813 1.02 TABLE ACCESS BY INDEX ROWID 2,978 muon 16K 3.613 7.14 IT LOAD AS SELECT 1 1 269KB 3 F LOAD AS SELECT 1 1 269KB 1 E LOAD AS SELECT 1 1 269KB 1 2 269KB - LOAD AS SELECT 1 1 -NESTED LOOPS Duration 113 seconds! (was 19 s) E NESTED LOOPS з 2 TABLE ACCESS FULL SYS_TEMP_0FD9FD03 Muon/Electron selection by index is much - INDEX UNIQUE SCAN SYS C003764 TABLE ACCESS BY INDEX ROWID MET_LocHadTopo HASH JOIN slower here as a much larger fraction

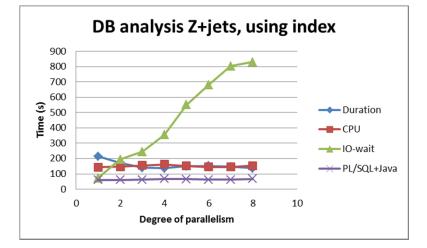
events pass the jet-pre-selection

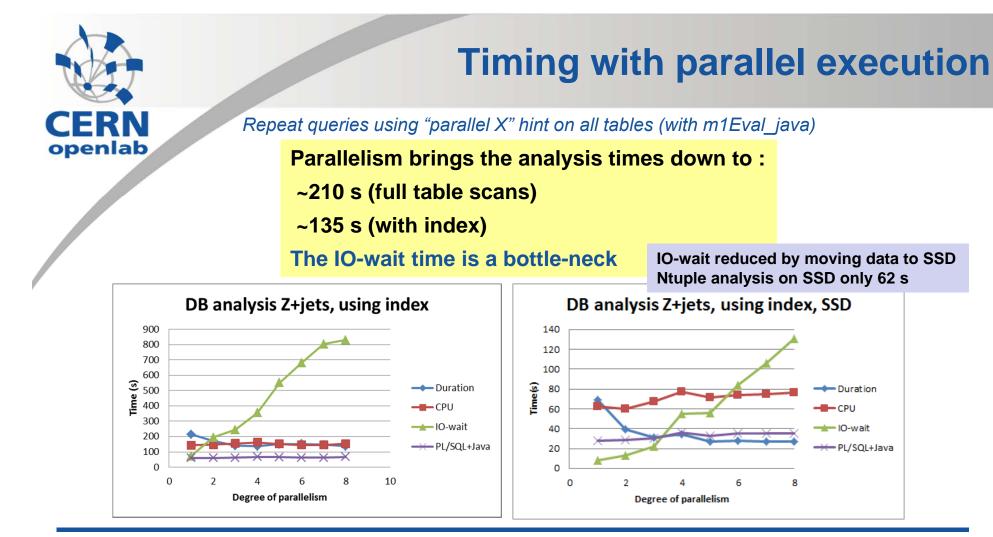
Timing Physics Analysis (2)

ZH→IIbb sample: mv1Eval	_java	mv1Eval (external)	fl_w_Comb>1.55	
Ntuple analysis:	15 s	15 s	12 s	
Database analysis, FULL:	<mark>19</mark> s	<mark>21</mark> s	<mark>18</mark> s	
Database analysis, via index:	113 s			
Z →II + jets sample:				
Ntuple analysis:	549 s	549 s	508 s	
Database analysis, FULL:	359 s	<mark>583</mark> s	333 s	
Database analysis, via index:	247 s			

Best selection strategy depends on sample!

Note: I did not specify to use the index, rather I removed the hint forcing the full table scan, the query optimizer could have made a better decision for the $ZH \rightarrow IIbb$ sample!

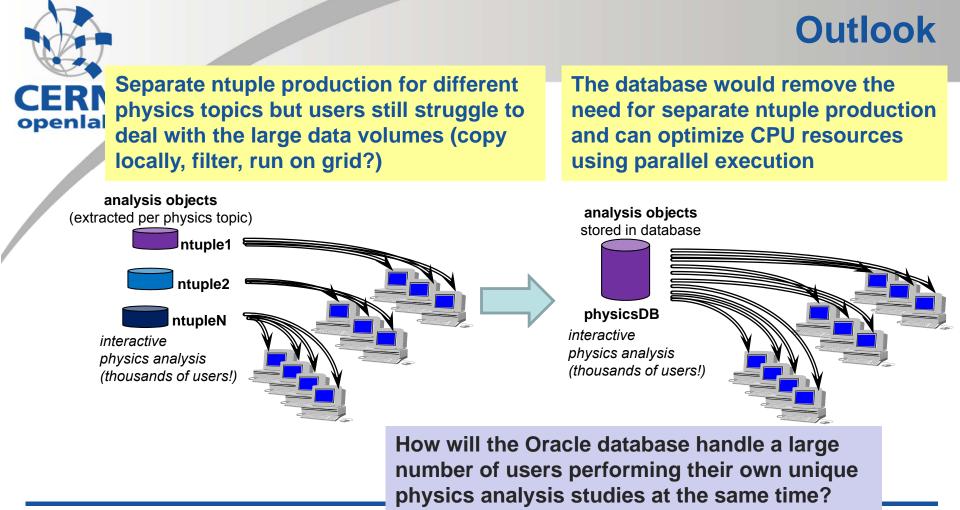

Timing with parallel execution


Repeat queries using "parallel X" hint on all tables (with m1Eval_java)

Parallelism brings the analysis times down to :

- ~210 s (full table scans)
- ~135 s (with index)

The IO-wait time is a bottle-neck


			Outlook
CERN	HZ→bbll (signal)	Z→II + jets (background)	2012 LHC data
openlab	3 GB ntuple data	170 GB ntuple data	60 TB ntuple data
	1.3 k out of 30 k events selected (~4%)	0.3 k out of 1662 k events selected (~0.02%)	? out of 1000 M events selected (<<0.01%)
	Analysis time*	Analysis time*	S *Database and ntuple-analysis run on same machine,
	DB: 19 s, ntuple: 15 s	DB: 247 s, ntuple: 549 s	timing fluctuation ~5%

Still to do: analysis of real data, requires a much larger sample of events and will result in an even smaller percentage of events selected

I'd expect the time-gain with respect to the ntuple-analysis to be even greater

LHC Data in the database to be separated in subsets of data (per RunNumber)

• analysis query to run simultaneous on each subset and histograms summed afterwards

LHC data analysis in an Oracle database: a real "big data" challenge! I study how to make this possible, but we are not implementing this just yet...

The database offers the advantage to store the data in a logical way and would remove the need for separate ntuple production for the different physics groups Analysis is IO intensive, the challenge is to have a good performance while being able to cater to the requirements of all physics groups

Analysis code can be rewritten in SQL, but it is not trivial

openlab

Query optimizer can not estimate number of rows returned by a complicated selection, hints are generally required to optimize performance

More complicated calculations might need to be done by external functions

Summary (2)

LHC physics analysis requires going through billions of events to find a handful of events that match the desired event topology

See for example the recently published $B_s \rightarrow \mu\mu$ result, billions of LHC collisions were processed to find an event-peak containing 10 events!

http://lhcb-public.web.cern.ch/lhcb-public/Welcome.html#BsMuMu3

Not as simple as pumping raw data from the LHC experiment straight into a database... Raw data is reconstructed into analysis objects, reconstruction in the database too complicated (for now) However, as shown today, the Oracle database can perform (basic) LHC physics analysis Further studies needed to understand if the database can handle thousands of users accessing hundreds of petabytes of data (and they all want their plots ASAP...)

Want to know more about CERN and LHC?

Plenty more information available on-line! Here's a snapshot:

Animation of ATLAS proton collision event showing LHC acceleration chain:

http://www.atlas.ch/multimedia/#di-jet-event

Study collision events with interactive CMS event displays:

http://cms.web.cern.ch/content/cms-data-public

The first collisions in the LHCb's experiment – March 30th, 2010

<u>http://www.youtube.com/watch?v=0uoqrh51ZPY</u>

Watch "ALICE Voyage inside the core of matter" at:

<u>http://aliceinfo.cern.ch/Public/Welcome.html</u>