
How to discover

the Higgs Boson

in an Oracle database
Maaike Limper

Introduction

“CERN openlab is a unique public-private partnership between CERN and leading

ICT companies. Its mission is to accelerate the development of cutting-edge

solutions to be used by the worldwide LHC community” http://openlab.web.cern.ch

In January 2012 I joined Openlab as an Oracle sponsored CERN fellow

2

My project: Investigate the possibility of doing LHC-scale

data analysis within an Oracle database

http://openlab.web.cern.ch/
http://openlab.web.cern.ch/
http://openlab.web.cern.ch/

CERN

LHC

Introduction

 Four main experiments recording events produced by the Large Hadron Collider:

ATLAS, CMS, LHCb and ALICE

 Implementation of physics analysis in Oracle database based on my

experience with the ATLAS experiment

3

LHCb

ATLAS

ALICE

CMS

Introduction

Some of the items I discuss today:

 LHC physics analysis: how do we go from detector measurements

to discovering new particles

 An example of a database structure containing analysis data

 An example of physics analysis code converted to SQL

 Using outside algorithms (C++/java) as part of the event selection

 Parallel execution

 Multiple Users

 Outlook

Disclaimer: any results shown today are for the purpose of illustrating my studies and

are by no means to be interpreted as real physics results!

4

Finding new particles…

 The detectors built around the collision point

measure the produced particles

 high energy quark production results in a ‘jet’ of

particles seen in the detector

 energy resulting from a collision at the LHC is

spread symmetrically, an imbalance in the energy

measured by the detectors often indicate the

presence of neutrino’s in the event

Z->mm candidate,

mmm=93.4 GeV

5

“Invariant mass”

𝑴=invariant mass, equal to mass of decay particle
 𝐸=sum of the energies of produced particles
 𝑝 𝑐 =vector sum of momenta of produced particles

M𝑐2=(𝐸)2 + 𝑝 𝑐 2

Many particles decay before we can measure them!

Instead we see these by their “invariant mass” calculated

from the energy and momentum of the decay products

When the Large Hadron Collider collides protons at high

energy the particles interact and the energy of the collision

is converted into the production of new particles!

Analysis versus reconstruction

Z->mm candidate,

mmm=93.4 GeV

Event Reconstruction focuses on creating physics objects from

the information measured in the detector

Event Analysis focuses on interpreting information from the

reconstructed objects to determine what type of event took place

ATLAS Event Display Large

7

Discovery of a “Higgs boson-

like” particle

The discovery of a “Higgs boson-like” particle!

http://www.bbc.co.uk/news/world-18702455

• The work of thousands of people!

• Operations of LHC and its experiments rely on databases for storing

conditions data, log files etc.

… but the data-points in these plots did not came out of a database !

8

Plots of the invariant mass

of photon-pairs produced at

the LHC show a significant

bump around 125 GeV

http://www.bbc.co.uk/news/world-18702455
http://www.bbc.co.uk/news/world-18702455
http://www.bbc.co.uk/news/world-18702455
http://www.bbc.co.uk/news/world-18702455
http://www.bbc.co.uk/news/world-18702455

Where does the data come from?

ATLAS CMS

ALICE

LHCb

9

Where does the data come from?

10

generationsimulationdigitization

reconstruction

 analysis

interactive

physics analysis

(thousands of users!)

event

analysis

raw data

event

reconstruction

analysis objects

(extracted per physics topic)

data acquisition

event

data taking

event

 summary

 data

simulated raw data

ntuple1

ntuple2

ntupleN
event

simulation

Global computing resources to store, distribute and analyse LHC

data are provided by the Worldwide LHC Computing Grid (WLCG)

which has more than 170 computing centres in 36 countries

Data analysis in practice

ROOT-ntuples are centrally produced by physics groups

from previously reconstructed event summary data

Each physics group determines specific content of ntuple

• Physics objects to include

• Level of detail to be stored per physics object

• Event filter and/or pre-analysis steps

11

event

 summary

 data

ntuple1

ntuple2

ntupleN

Data in ntuples is stored as a “TTree” object, with a “TBranch” for each variable

Optimized to reduce I/O: retrieving only TBranches neccessary for analyses

from ntuple, data from loaded branches cached

LHC Physics analysis is done with ROOT

• Dedicated C++ framework developed by the High

Energy Physics community, http://root.cern.ch

• Provides tools for plotting/fitting/statistic analysis etc.

https://root.cern.ch/

Data analysis in practice

12

 analysis

interactive

physics analysis

(thousands of users!)

event

analysis

analysis objects

(extracted per physics topic)

ntuple1

ntuple2

ntupleN

Small datasets copy data and run analysis locally

Large datasets:use the LHC Computing Grid
• Grid computing tools split the analysis job in multiple jobs

each running on a subset of the data

• Each sub-job is sent to Grid site where input files are available

• Results produced summed at the end

Bored waiting days for all grid-jobs to finish

Filter data and produce private mini-ntuples

Ntuples are centrally produced per physics topic

Analysis is typically I/O intensive and runs on many files

Can we replace the ntuple analysis with a model

where data is analysed from an Oracle database?

Benchmark Physics Analysis in an Oracle DB:

• Simplified version of the HZbbll analysis (search for standard model

Higgs boson produced in association with a Z-boson)

• Select lepton-candidates to reconstruct Z-peak

• Select b-jet-candidates to reconstruct Higgs-peak

Oracle database filled with data from two samples of simulated data:

• Signal sample: 30 k events (3 ntuples)

• Background sample (Z+2/3/4 jets): 1662 k events (168 ntuples)

• Use ntuple defined by ATLAS Top Physics Group: ”NTUP_TOP”

• 4212 physics attributes per event

• Size of each ntuple is approx. 850 MB

13

Physics analysis in a

database

Physics analysis in a

database

Currently implemented 1042 variables,

divided over 5 different tables

14

Variable “EventNo_RunNo” uniquely defines each event

Tables “eventData” and “MET”(missing transverse energy):

• One row of data for each event

• primaryKey=(EventNo_RunNo)

Tables “muon”, “electron” and “jet”:

• One row of data for each muon/electron/jet object

• primaryKey=(muonId/jetID/electronID,EventNo_RunNo),

• “EventNo_RunNo” is indexed

Table name columns k rows k blocks size in MB

MET 56 1662 119.44 933

eventData 185 1662 151.13 1181

muon 297 1489 481 3758

electron 305 10971 3274.72 25584

jet 210 27931 5943.19 46431

Table name columns k rows k blocks size in MB

MET 56 30 2.15 17

eventData 185 30 2.73 21

muon 297 38 12.4 97

electron 305 223 69.08 540

jet 210 481 107.36 839

ZH->llbb

Z->ll + 2/3/4 jets

Table statistics:

My test DB implementation contains ~75 GB of data

A real physics database containing all 2012 data

would contain ~50 TB (“NTUP_TOP”-samples)

Database design philosophy:

Separate tables for different physics objects

Users read the object-tables relevant for their analysis

…and ignore the table that are not

Physics Analysis (1)

My version of the HZbbll analysis

• MET selection: Missing tranverse energy in events less then 50 < GeV

• electron selection: require pT>20 GeV and |η|<2.4, requirement on hits and holes

on tracks, isolation criteria

• muon selection: require pT>20 GeV and |η|<2.4, requirement on hits and holes on

tracks, isolation criteria

• Require exactly 2 selected muons OR 2 selected electrons per event

• b-jet selection: tranverse momentum greater than pT>25 GeV, |η|<2.5 and

“flavour_weight_Comb”>1.55 (to select b-jets)

• Require opening-angle between jets ΔR>0.7 when pTH< 200 MeV

• Require exactly 2 selected b-jets per event

• Require 1 of the 2 b-jets to have pT>45 GeV

• Plot “invariant mass” of the leptons (Z-peak) and of the b-jets (Higgs-peak)

 15

The goal of the analysis is to select signal events and

removing as many background events as possible

The ratio of signal over background events will

determine the significance of your discovery!

My analysis uses a total of 40

different variables from

“MET”, “jet”, “muon” and

“electron” tables

Database versus ntuples

Two versions of my analysis:

1. Standard ntuple-analysis in ROOT (C++) using locally stored ntuples

• Load only the branches needed for the analysis to make the analysis as fast as possible

• Loop over all events and applies the selection criteria event-by-event

2. Analysis from the same data stored in the Oracle database using functions for

invariant mass and lepton selection implemented in PL/SQL

• Executes a single SQL-query performing the data analysis via TOracleServer-class in ROOT

• Rows returned by the query via TOracleServer are used to produce histograms

Check that both methods produce the same result and see which is faster!

16

Physics Analysis (1) SQL (part 1)

17

with sel_MET_events as (select /*+ MATERIALIZE FULL("MET_LocHadTopo") */

"EventNo_RunNo","EventNumber","RunNumber" from "MET_LocHadTopo" where

PHYSANALYSIS.pass_met_selection("etx","ety") = 1),

sel_electron as (select /*+ MATERIALIZE FULL("electron") */ "electron_i","EventNo_RunNo","E","px","py","pz" from "electron"

where PHYSANALYSIS.IS_ELECTRON("pt","eta","author","mediumWithTrack", 20000., 2.5) = 1),

sel_electron_count as (select "EventNo_RunNo",COUNT(*) as "el_sel_n" from sel_electron group by "EventNo_RunNo"),

sel_muon as (select /*+ MATERIALIZE FULL("muon") */ "muon_i","EventNo_RunNo","E","px","py","pz" from "muon" where

PHYSANALYSIS.IS_MUON("muon_i", "pt", "eta", "phi", "E", "me_qoverp_exPV", "id_qoverp_exPV","me_theta_exPV",

"id_theta_exPV", "id_theta", "isCombinedMuon", "isLowPtReconstructedMuon","tight","expectBLayerHit", "nBLHits",

"nPixHits","nPixelDeadSensors","nPixHoles","nSCTHits","nSCTDeadSensors","nSCTHoles","nTRTHits","nTRTOutliers",0,20000.,

2.4) = 1),

sel_muon_count as (select "EventNo_RunNo",COUNT(*) as "mu_sel_n" from sel_muon group by "EventNo_RunNo"),

sel_mu_el_events as (select /*+ MATERIALIZE */ "EventNo_RunNo","el_sel_n","mu_sel_n" from sel_MET_events LEFT

OUTER JOIN sel_electron_count USING ("EventNo_RunNo") LEFT OUTER JOIN sel_muon_count USING ("EventNo_RunNo")

where ("el_sel_n"=2 and "mu_sel_n" is NULL) or ("el_sel_n" is NULL and "mu_sel_n"=2)),

List of selection criteria translates into a set of select statements

defined as temporary tables
Without MATERIALIZE hint, query optimizer gets confused…

JOIN is used to combine information from different tables
FULL table scan is usually fastest, I’ll come back to that later…

Physics Analysis (1) SQL (part 2)

18

sel_electron_events as (select /*+ MATERIALIZE */

"EventNo_RunNo",PHYSANALYSIS.INV_MASS_LEPTONS(el0."E",el1."E",el0."px",el1."px",el0."py",el1."py",el0."pz",el1."pz")/100

0. as "DiElectronMass" from sel_mu_el_events INNER JOIN sel_electron el0 USING ("EventNo_RunNo") INNER JOIN

sel_electron el1 USING ("EventNo_RunNo") where el0."electron_i"<el1."electron_i"),

sel_muon_events as (select /*+ MATERIALIZE */

“EventNo_RunNo",PHYSANALYSIS.INV_MASS_LEPTONS(muon0."E",muon1."E",muon0."px",muon1."px",muon0."py",muon1."py

",muon0."pz",muon1."pz")/1000. as "DiMuonMass " from sel_mu_el_events INNER JOIN sel_muon muon0 USING

("EventNo_RunNo") INNER JOIN sel_muon muon1 USING ("EventNo_RunNo") where muon0."muon_i"<muon1."muon_i"),

sel_jet as (select /*+ MATERIALIZE FULL("jet") */ "jet_i","EventNo_RunNo","E","pt","phi","eta" from "jet" where "pt">25000. and

abs("eta")<2. 5 and "fl_w_Comb">1.55),

sel_jet_count as (select "EventNo_RunNo" from sel_jet group by "EventNo_RunNo" HAVING MAX("pt")>45000. and COUNT(*) = 2),

sel_jet_events as (select /*+ MATERIALIZE */

"EventNo_RunNo",PHYSANALYSIS.INV_MASS_JETS(jet0."E",jet1."E",jet0."pt",jet1."pt",jet0."phi",jet1."phi",jet0."eta",jet1."eta")/10

00. as "DiJetMass“ from sel_jet_count INNER JOIN sel_jet jet0 USING ("EventNo_RunNo") INNER JOIN sel_jet jet1 USING

("EventNo_RunNo") where jet0."jet_i"<jet1."jet_i" and

PHYSANALYSIS.pass_bjet_pair_selection(jet0."pt"/1000.,jet1."pt"/1000.,jet0."phi",jet1."phi",jet0."eta",jet1."eta") = 1)

select "EventNo_RunNo","EventNumber","RunNumber","DiMuonMass","DiElectronMass","DiJetMass" from

sel_muon_events FULL OUTER JOIN sel_electron_events USING ("EventNo_RunNo") INNER JOIN sel_jet_events USING

("EventNo_RunNo") INNER JOIN sel_MET_events USING ("EventNo_RunNo")

The final select-statement returns the invariant mass of the leptons and jets

Plots Physics Analysis (1)

Database analysis

19

Ntuple analysis

HZbbll sample

1.5 k out of 30 k

events (~5%)

Plots Physics Analysis (1)

20

Zll+2/3/4 jets sample

Database analysis Ntuple analysis

1.2 k out of 1662 k

events (~0.08%)

Timing Physics Analysis (1)

21

Database runs on the same (itrac) machine as the root ntuple analysis

Ntuple-files and database-files use the same storage space (NFS)

Timing results done after clearing caches for more consistent results

ntuple: sync && sysctl -w vm.drop_caches=3

DB: alter system flush buffer_cache; alter system flush shared_pool

ZHllbb sample:

Ntuple analysis: 12 seconds

Database analysis: 18 seconds

Zll + jets sample:

Ntuple analysis: 508 seconds

Database analysis: 333 seconds

SQL monitoring

Physics Analysis (1) Zll+jets

22

Query time mainly due to full table scans
“MET”-table: 12 s

“electron”-table: 102 s

“muon”-table: 29 s

“jet”-table: 178 s

Physics Analysis (2)

“mv1Eval”: a neural-network based algorithm that combines the output of different b-tagging weights to

calculate an optimized b-tagging weight

Compile the code as a standalone library and you call it as an external function from SQL

23

What if a user can’t (or does not want) to re-write a piece of more

complicate analysis code in SQL?

Changed b-jet selection to re-calculate the jet “flavour weight”, using some

C++ code from ATLAS

And it works, no problem!

plots on following slides

FUNCTION mv1Eval_fromExternal(w_IP3D double precision, w_SV1 double precision, w_JetFitterCombNN

double precision, jet_pt double precision, jet_eta double precision) return double precision

 AS EXTERNAL library "MV1_lib" name "mv1Eval" language c parameters (w_IP3D double, w_SV1 double,

w_jetFitterCombNN double, jet_pt double, jet_eta double);

Plots Physics Analysis (2)

24

Database analysis Ntuple analysis

HZbbll sample

1.3 k out of 30 k

events (~4%)

Plots Physics Analysis (2)

25

Zll+2/3/4 jets sample

Database analysis Ntuple analysis

0.3 k out of 1662 k

events (~0.02%)

Timing Physics Analysis (2)

26

The SQL monitoring plan showed that the time spent on the full scan of the

jet-table increased from 178 s to 428 s when using the external function

ZHllbb sample: fl_w_Comb>1.55 mv1Eval_C (external)

Ntuple analysis: 12 s 15 s

Database analysis: 18 s 21 s

Zll + jets sample:

Ntuple analysis: 508 s 549 s

Database analysis: 333 s 583 s

The database analysis lost a lot of

time by adding the use of a function

from an external C library!

External library functions continued

27

Solution is using Java!

Java provides a controlled environment executed within the

same process and address space as the oracle process

But I don’t want to rewrite the code in Java…

So I tried to call my C++ library using Java Native Interface

The “mv1Eval”-function is being called for every row via the external procedure agent (“extproc”)

The agents runs in its own private address space and exchanges input/output parameters

between the oracle process and the external library code using IPC

The IPC overhead is (far) higher than the actual cost of the calculation!

When I replaced the MV1-algorithm with a function that only did “return 1.”

the time to process all rows in the jet-table was still ~380 seconds

PL/SQL calling Java calling C++

28

PL/SQL
FUNCTION mv1Eval_java(w_IP3D IN NUMBER, w_SV1 IN NUMBER, w_JetFitterCombNN IN NUMBER,

jet_pt IN NUMBER, jet_eta IN NUMBER) return double precision

as language java

name 'MV1_interface.mv1Eval(double, double,double,double,double) return double';

public class MV1_interface {

 public native static double mv1Eval(double fl_w_IP3D, double fl_w_SV1, double fl_w_JetFitterCOMBNN, double pt, double eta);

 static{ System.loadLibrary("MV1_interface.so");} }

JNIEXPORT jdouble JNICALL Java_MV1_1interface_mv1Eval

(JNIEnv *, jclass, jdouble w_IP3D, jdouble w_SV1, jdouble w_JetFitterCombNN, jdouble jet_pt, jdouble jet_eta){

 double value = mv1Eval(w_IP3D, w_SV1, w_JetFitterCombNN, jet_pt, jet_eta);

 return value; }

exec dbms_java.grant_permission('MLIMPER','SYS:java.lang.RuntimePermission','loadLibrary.MV1_interface.so','');
Set permission to load library!

Java

C-interface calling C++

Timing Physics Analysis (2)

29

Finally I’ll show how I tried to improve the DB performance by changing my query:

• pre-select events passing the jet-pair criteria

• access the other tables using the index on EventNo_RunNo, so that only those

rows that passed the jet-criteria have to be processed

ZHllbb sample: fl_w_Comb>1.55 mv1Eval_C mv1Eval_C_via_java

Ntuple analysis: 12 s 15 s 15 s

Database analysis: 18 s 21 s 19 s

Zll + jets sample:

Ntuple analysis: 508 s 549 s 549 s

Database analysis: 333 s 583 s 359 s

SQL using index scan after

jet-select (part 1)

30

with sel_jet as (select /*+ MATERIALIZE FULL("jet") */ "jet_i","EventNo_RunNo","E","pt","phi","eta" from "jet" where "pt">25000.

and abs("eta")<2.5 and MV1.mv1Eval_java("fl_w_IP3D","fl_w_SV1","fl_w_JetFitterCOMBNN","pt","eta")>0.60173),

sel_jet_count as (select "EventNo_RunNo" from sel_jet group by "EventNo_RunNo" HAVING MAX("pt")>45000. and COUNT(*) = 2),

sel_jet_events as (select /*+ MATERIALIZE */

"EventNo_RunNo",PHYSANALYSIS.INV_MASS_JETS(jet0."E",jet1."E",jet0."pt",jet1."pt",jet0."phi",jet1."phi",jet0."eta",jet1."eta")/1

000. as "DiJetMass“ from sel_jet_count INNER JOIN sel_jet jet0 USING ("EventNo_RunNo") INNER JOIN sel_jet jet1 USING

("EventNo_RunNo") where jet0."jet_i"<jet1."jet_i" and

PHYSANALYSIS.pass_bjet_pair_selection(jet0."pt"/1000.,jet1."pt"/1000.,jet0."phi",jet1."phi",jet0."eta",jet1."eta") = 1),

sel_electron as (select /*+ MATERIALIZE */ "electron_i","EventNo_RunNo","E","px","py","pz" from "electron" INNER JOIN

sel_jet_events USING ("EventNo_RunNo") where PHYSANALYSIS.IS_ELECTRON("pt","eta","author","mediumWithTrack",

20000., 2.5) = 1 and “ptcone20”<0.1*”pt”),

sel_electron_count as (select "EventNo_RunNo",COUNT(*) as "el_sel_n" from sel_electron group by "EventNo_RunNo"),

sel_muon as (select /*+ MATERIALIZE */ "muon_i","EventNo_RunNo","E","px","py","pz" from "muon" INNER JOIN

sel_jet_events USING ("EventNo_RunNo") where PHYSANALYSIS.IS_MUON("muon_i", "pt", "eta", "phi", "E",

"me_qoverp_exPV", "id_qoverp_exPV","me_theta_exPV", "id_theta_exPV", "id_theta", "isCombinedMuon",

"isLowPtReconstructedMuon","tight","expectBLayerHit", "nBLHits", "nPixHits","nPixelDeadSensors", "nPixHoles",

"nSCTHits","nSCTDeadSensors", "nSCTHoles", "nTRTHits", "nTRTOutliers",0,20000.,2.4) = 1 and “ptcone20”<0.1*”pt”),

sel_muon_count as (select "EventNo_RunNo",COUNT(*) as "mu_sel_n" from sel_muon group by "EventNo_RunNo"),

Query same as before, but removed FULL table scan hints

for electron, muon and MET selection (and jet-selection first)

31

sel_mu_el_events as (select /*+ MATERIALIZE */ "EventNo_RunNo","el_sel_n","mu_sel_n" from sel_jet_events LEFT OUTER

JOIN sel_electron_count USING ("EventNo_RunNo") LEFT OUTER JOIN sel_muon_count USING ("EventNo_RunNo") where

("el_sel_n"=2 and "mu_sel_n" is NULL) or ("el_sel_n" is NULL and "mu_sel_n"=2)),

sel_electron_events as (select /*+ MATERIALIZE */

"EventNo_RunNo",PHYSANALYSIS.INV_MASS_LEPTONS(el0."E",el1."E",el0."px",el1."px",el0."py",el1."py",el0."pz",el1."pz")/10

00. as "DiElectronMass“ from sel_mu_el_events INNER JOIN sel_electron el0 USING ("EventNo_RunNo") INNER JOIN

sel_electron el1 USING ("EventNo_RunNo") where el0."electron_i"<el1."electron_i"),

sel_muon_events as (select /*+ MATERIALIZE */

"EventNo_RunNo",PHYSANALYSIS.INV_MASS_LEPTONS(muon0."E",muon1."E",muon0."px",muon1."px",muon0."py",muon1."

py",muon0."pz",muon1."pz")/1000. as "DiMuonMass"

 from sel_mu_el_events INNER JOIN sel_muon muon0 USING ("EventNo_RunNo") INNER JOIN sel_muon muon1 USING

("EventNo_RunNo") where muon0."muon_i"<muon1."muon_i"),

sel_MET_events as (select /*+ MATERIALIZE */ "EventNo_RunNo","EventNumber","RunNumber" from "MET_LocHadTopo"

INNER JOIN sel_mu_el_events USING ("EventNo_RunNo") where PHYSANALYSIS.pass_met_selection("etx","ety") = 1)

select "EventNo_RunNo","EventNumber","RunNumber",

"DiMuonMass","DiElectronMass","DiJetMass" from sel_muon_events FULL OUTER JOIN sel_electron_events USING

("EventNo_RunNo") INNER JOIN sel_jet_events USING ("EventNo_RunNo") INNER JOIN sel_MET_events USING

("EventNo_RunNo")

Query same as before, but removed FULL table scan hints

for electron, muon and MET selection (and jet-selection first)

SQL using index scan after

jet-select (part 2)

Timing Physics Analysis (2)

32

Best selection strategy depends on sample!

Note: I did not specify to use the index, rather I removed the hint forcing the full table

scan, the query optimizer could have made a better decision for the ZHllbb sample!

ZHllbb sample: mv1Eval_java mv1Eval (external) fl_w_Comb>1.55

Ntuple analysis: 15 s 15 s 12 s

Database analysis, FULL: 19 s 21 s 18 s

Database analysis, via index: 113 s

Zll + jets sample:

Ntuple analysis: 549 s 549 s 508 s

Database analysis, FULL: 359 s 583 s 333 s

Database analysis, via index: 247 s

Parallel execution

33

Test if analysis time can be

reduced using parallel execution:

Repeat queries using “parallel X” on all tables:

Parallelism brings the analysis times down to :

 ~210 s (full table scans)

 ~135 s (with index)

The IO-wait time is a bottle-neck preventing the

parallelism from having a more significant effect

* CPU,IO-wait and PL/SQL+Java time is

sum of time over all parallel servers

Parallel execution, with flash disk

34

Even with fast local flash disk storage,

IO-wait time is still a bottle-neck

Copied test setup to an improved setup to “devrac5”

more CPU power and fast local flash disk storage

Ntuple analysis: 62 s

Database analysis: 72 s (DOP=1)

Database analysis: 33 s (DOP=3)

Gain from parallelism higher on SSD but

no more gain after DOP=3

Ntuples gain relatively more from move to SSD

Multiple users

35

Simulate multiple users accessing the database

Simultaneously run benchmark analysis multiple times with

slight variation in cut criteria to create unique queries:

Average analysis time increases

rapidly with number of users

Again I/O bottle-neck

itrac-machines

with NFS storage devrac5

Physics Analysis in an Oracle database
(M. Limper)

36

IO-wait results from the limit of

sequential read on the storage device

NFS reads up to 500 MB/s

(not bad!)

SSD: 2000 MB/s sequential read limit

I/O MB per second for DB on itrac1202 machines

I/O MB per second for DB on devrac5

performance plots made

during multiple user tests

Test with reduced table content

37

Small version of the tables: only the variables

needed for the benchmark analysis

“jet”-table is 2 GB instead of 45 GB !

Analysis down to 121 seconds

Or 32 seconds with parallel 8 (itrac-setup)

Small table results illustrate the drawback of Oracle DB’s

row-based storage

The database is forced to scan through all data in each row

to get to the variables needed for analysis

But a real physics analyis database should contain all

variables needed for any analysis a user might think of…

Z->ll + 2/3/4 jets small

Table name columns k rows k blocks size in MB

eventData 3 1662 4.7 37.6

MET_LocHadTopo 5 1662 9.16 73.3

muon 31 1489 29.96 239.7

electron 16 10971 112.64 901.1

jet 12 27931 256.22 2049.8

Outlook

38

The Oracle database still needs to proof it can handle many users performing their

own unique physics analysis studies at the same time

Huge amount of resources needed to build a database used by thousand of physicists

and contain all necessary data (simulated, real and multiple production versions)

interactive

physics analysis

(thousands of users!)

analysis objects

(extracted per physics topic)

ntuple1

ntuple2

ntupleN

analysis objects

stored in database

physicsDB

interactive

physics analysis

(thousands of users!)

Physics analysis in an Oracle database ?

Yes it could be done but…

Conclusion

Physics Analysis is I/O intensive, many events are stored but few pass selection

Row-based storage is not ideal when many variables are stored but few variables

are needed for a specific analysis, TTree stored in root was optimized for this!

39

LHC data analysis in an Oracle database: a real “big data” challenge!

I study how to make this possible, but we are not implementing this just yet…

It would be interesting to see performance of physics

analysis in another type of database (Hadoop?)

The database offers the advantage to store the data in a

logical way and remove the need for separate ntuple

production for the different physics groups

Analysis code can be rewritten in SQL

Complicated calculations can be done by external functions

Oracle Exadata

40

Currently preparing to test Physics Analysis on Exadata

Hope to get one week access to an Exadata in february

Oracle Exadata offers interesting

features to deal with I/O issues:

Smart Scan

Column Projection

Storage Indexes

Hybrid Columnar Compression

