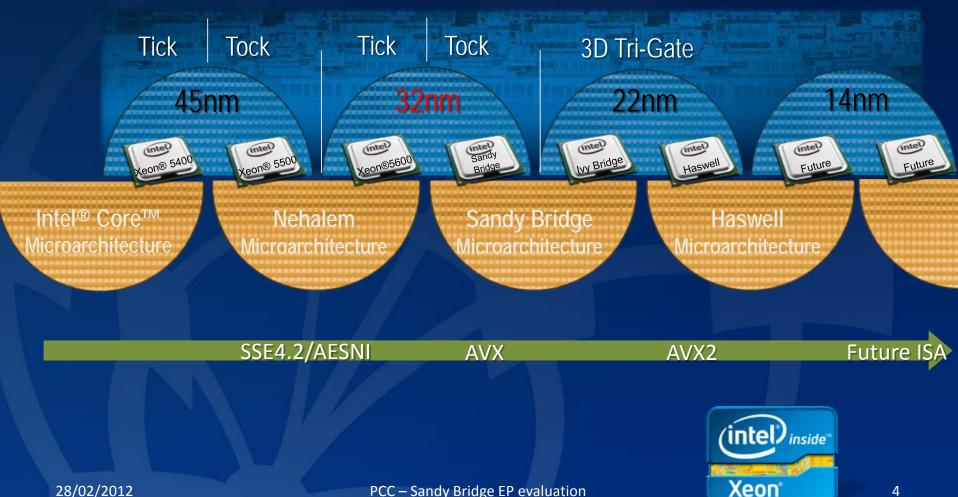

Sandy Bridge EP evaluation

CERN openlab Minor review meeting Feb 28 2012 Sverre Jarp, CERN openlab

Based on technical contributions by A.Lazzaro, J.Leduc, A.Nowak Slide master also from A.Nowak


Overview

- 1. Benchmarking complexity
- 2. Intel's tick-tock model
- 3. Sandy Bridge details
- 4. Architecture/Micro-architecture
- 5. SNB CPU models
- 6. SNB Results
 - a. HEPSPEC
 - b. HEPSPEC/W
 - c. MT Geant4
 - d. Mlfit
- 7. Conclusion

Benchmarking: A complex affair

- At least the following elements need to be controlled:
 - Hardware:
 - Processor generation
 - Socket count
 - Core count
 - CPU frequency
 - Turbo boost
 - SMT
 - Cache sizes
 - Memory size and type
 - Power configuration
 - Software:
 - Operating System version
 - Compiler version and flags

Intel's tick-tock model

SNB in some detail

- Advanced Vector eXtensions (AVX)
 - 256 bit registers which can hold 4 doubles/8 floats
 - AVX instruction set
- More execution units (2 * LD, for instance)
- Enhanced Hyper-threading and Turboboost technology
- Larger on-die L3 cache
- Integrated PCI Express 3.0 I/O

Architecture vs microarchitecture

Architecture

- New register format
 - e.g. 256-bit AVX registers

New (ternary) instructions

• e.g. vdivpd ymm1, ymm2, ymm3

Microarchitecture

- Lots of design decisions for a given processor
 - Number of execution units (and their width)
 - Data paths (and width)
 - Cache sizes
 - Etc.

The way it works

The speed at which it works

CPU models

• Long list of models to choose from.

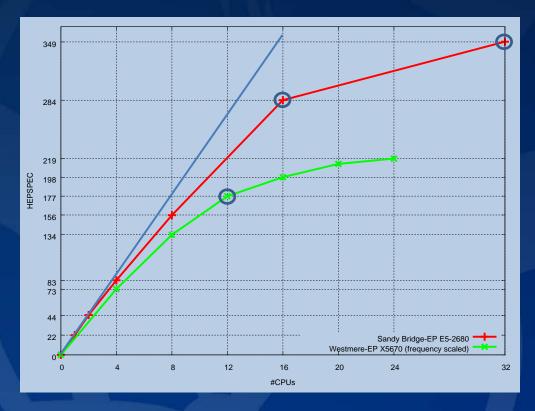
Some variants:

Number	Core count	Frequency (GHz)	TDP (W)
E5-2630L	6/12	2.3	60
E5-2650L	8/16	1.8	70
E5-2680	8/16	2.7	130
E5-2690	8/16	2.9	135

SNB results

• System tested:

- Beta-level white box; Dual-socket server.
- E5-2680 @ 2.7 GHz, 8 cores, 130W TDP
 - 32 GB memory (1333 MHz)
 - C1 stepping


Benchmarks used:

- HEPSPEC
- HEPSPEC/W
- MT-Geant4
- MLfit

HEPSPEC

Throughput test from SPEC 2006

- All the C++ jobs (INT as well as FP); As many copies as cores
- SLC 5.7/gcc 4.1.2/64-bit-mode/Turbo off/SMT on
- Compared to 6-core Westmere-EP X5670 (@2.93 GHz)
 - Frequency-scaled

Using only the "real" cores:	
Speed-up per core:	1.2x
Core count:	1.33x
Total:	<u>1.6x</u>

SMT gain (for both):

1.23x

Energy efficiency

- For CERN and most W-LCG sites, energy efficiency is paramount
 - Our centres have (more or less) a fixed amount of electric energy
 - Ideally, we would like to double the throughput/watt from generation to generation
 - This was relatively easy when core count increased geometrically:
 - $1 \rightarrow 2 \rightarrow 4$

- Recently, however, it has been increasing arithmetically:

• 4 (NHM) \rightarrow 6 (WSM: 1.5x) \rightarrow 8 (SNB: 1.33x)

HEPSPEC/Watt

Great news: Bigger jump than foreseen in energy efficiency!

Now reaching 1 HEPSPEC/W which is 1.7x compared to WSM-X5670

SNB

- SNB options: SLC 5.7, 64-bit mode, SMT on, Turbo on
- WSM options: SLC 5.4

E5-2680 HEP performance per Watt Turbo-on running SLC5 E5-2680 SMT-off E5-2680 SMT-on **Bigger is better!** 1.039 0.925 X5670 HEP performance per Wat (extrapolated from 12GB to 24GB X5670 SMT-off 0.8 SPEC / W 0.61 04 0.2 **WSM**

STOP PRESS: With SLC 6 (gcc 4.4.6) we further lower the power consumption by 5% and increase the HEPSPEC results by 3%: 1.083x in total !

MT Geant4

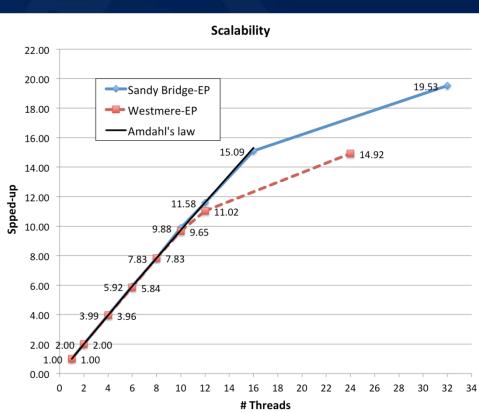
Our favourite benchmark for testing weak scaling:

- Speed-up compared to Westmere (L5640@2.26GHz):
 - Both servers with Turbo-off, SMT-on (WSM frequency-adjusted): 1.46x

1.25x

• SMT increase:

Multi-threaded Geant 4 prototype (generation 6) scalability on Sandy Bridge-EP Beta ParFullCMSmt: average simulation time for 100 events per thread 1400 140% 1200 120% A verage simulation time [s] 1000 100% 800 80% Efficienc 600 60% 400 · 40% 200 20% Simulation time Efficiency 0 .0% 28 30 Π 2 12 20 22 -24 26 - 32 10 14 18 # logical cores


MLFit

SLC 6.2, icc 12.1.0, pinning of threads

• Our favourite benchmark for testing strong scaling:

PCC – Sandv

- Single core (Turbo off, using SSE):
- Single core, moving to AVX:
- All the "real" cores w/SSE: (1.33 * 1.19)
- All the "real" cores & AVX: (1.59 *1.12)

1.19x

1.12x

1.59x

1.78x

SNB SMT speed-up: 1.29x

28/02/2012

Conclusion

- Sandy Bridge EP confirms Intel's desire to improve both absolute performance and performance per watt
- CERN and W-LCG will appreciate both

 In particular, the HEPSPEC/W value
- The full openlab evaluation report will be published at launch time (as usual)
 - The Westmere-EP (X5670) report is available since April 2010