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CERN conducts research to find answers to y
fundamental questions about our universe s

For that purpose, CERN

e operates the Large Hadron Collider (LHC).
= proton-proton collision at 14TeV, 40MHz

* hosts High Energy Physics (HEP) experiments.
= ALICE, ATLAS, CMS, LHCb, etc.

* develops required technologies.

= (opto)-electronic data links, sensors, vacuum, cooling, etc.



Radiation-hard fiber optic links are the y
backbone of the experiments’ read-out systems Z

custom-made,
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HL-LHC luminosity upgrades will
entail more particle collisions

LHC currently runs at nominal luminosity.
Upgrade to High-Luminosity (HL)-LHC around 2024 will increase luminosity by 5x.

=» 5x higher radiation levels in innermost detector regions

1-MeV neutron fluence up to 3 X 101°n/cm? : : .
during 10-year operational lifetime
Total lonizing Dose (TID) of at least 1MGy
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=» new optical transceivers that can withstand expected radiation
levels in HL-LHC are required to read-out sensor data
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Lasers degrade too much to be considered y
for innermost detector regions 7

laser exclusion (>6e15n/cm?)
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Neutron-induced increase in threshold current and decrease in slope efficiency for Vertical
Cavity Surface Emitting Lasers (VCSELs) cannot be compensated for beyond the capabilities of
the driving electronics.

=>» no tight integration with detector modules possible in harshest environments of HL-LHC



Silicon Photonics as alternative: CMOS- y
compatible electro-optic integrated circuits

Silicon Photonics

Modulator

Photodetector

from [2]

Technology promises:

CMOS-compatible = low cost devices

Integration with electronic circuits = chips with reduced power & increased functionality
Our hope:

Radiation-hardness similar to those of silicon pixel sensors currently used in HEP experiments

=» Silicon Photonics (SiPh) Mach-Zehnder modulator is being investigated



Phase modulation in the arms of an Mach-Zehnder y
interferometer leads to amplitude modulation 7

Schematic of an interferometric Mach-Zehnder Modulator (MZM)
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Phase modulation in the arms of an Mach-Zehnder y

interferometer leads to amplitude modulation 7
Schematic of an interferometric Mach-Zehnder Modulator (MZM)
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Voltage-induced carrier depletion in phase shifter y

diode results in phase shift of light 7
hole density at OV bias hole density at -3V bias
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Carrier density change leads to change in material’s refractive index (Plasma Dispersion Effect).

¥

Guided mode sees a change in its effective refractive index n .

Accumulated phase shift of light after traveling through phase shifter of length L:
_ ZﬂAneffL
2
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Phase shift can be determined by

measuring MZMs’ transmission spectra

il

SLED

phase shift given by

AD(V _ 2mAA(V)
¢(V) = —Fp
=>» the larger the phase

shifter the more efficient
the device

optical power (dBm)

wavelength (m)
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SiPh MZMs show high resistance y

against displacement damage 7
1-MeV neutron fluence (n/cm?)
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Silicon Photonic (SiPh) Mach-Zehnder Modulators (MZMs) show no significant

performance degradation due to displacement damage.
But: devices are very sensitive to ionizing radiation [3].

=>» Can MZM design be improved to increase resistance to ionizing radiation?
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Simulations indicate that changes to MZM design can y
improve resistance against ionizing radiation 7~

MZM'’s failure mechanism can be attributed to large density of positive trapped charge

in SiO, which pinches-off holes in waveguide from contact [4].
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3 types of phase shifter diodes were y

evaluated for their radiation hardness 2
interleaved pn-junctions lateral pn-junctions lateral pn-junctions
deep etch depth deep etch depth shallow etch depth
L=0.5mm, 1.0mm, 1.5mm L=1.9mm L=1.9mm

+ highest modulation efficiency e medium modulation efficiency + highest modulation bandwidth
- lowest modulation bandwidth e medium modulation bandwidth - lowest modulation efficiency

In addition: Samples with two different p- and n-doping concentration
in the waveguide were fabricated in 2015 by imec [5]
* nominal doping
e 2x nominal doping
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All measurements were done
at die-level on a probe-station
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MZM samples were exposed to increasing y
TID and characterized after each dose-step 7

pre-irradiation characterization

x-ray exposure (14.05Gy/s)

; post-x-ray characterization
increase dose

yes

Dice were not bonded to PCB = not biased during irradiation
No annealing between and after irradiation steps

Irradiation and measurements at room temperature
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Phase shift of MZMs with interleaved
junctions vanishes around 100kGy

| < nominal doping
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Independent of MZM length and doping concentration
* only 50% phase shift remains at 50kGy
* No phase shift measurable for TID levels > 150kGy
=» design not of interest to HEP applications
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MZMs with lateral junction withstand higher y

TID despite having the same etch depth 7
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Independent of wy,,, and doping concentration
* No significant phase shift degradation up to 100kGy
* No phase shift measurable for TID levels > 200kGy

= slightly better than MZMs with interleaved junction

but still degrade too fast "



Reducing the etch depth greatly improves y
the radiation hardness 7
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* No degradation until 2000kGy but at higher TID for samples with nominal doping
* No degradation up to 3100kGYy for samples with 2x nominal doping
* Phase shift enhancement before samples start to degrade

=» Shallow etch depth and high doping concentration increases resistant against
ionizing radiation significantly; candidate devices for application in HL-LHC 19



Simulations show that pinch-off of holes

causes phase shift degradation

deep etch MZM w/ nominal doping

measured/simulated
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Simulation performed for deep etch MZM
w/ nominal doping according to model
proposed in [4].

Parameter fitting for shallow etch MZM
and MZMs with 2x nominal doping is
ongoing work.
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Summary 3’

e LHC luminosity upgrades will require new optical transceivers with improved
radiation hardness

* SiPh MZMs are therefore investigated as alternative to VCSELs because these
cannot be employed in harshest radiation regions

* Simulation results indicate that the doping concentration and the etch depth
affect the radiation hardness of MZMs

* SiPh test chip was designed and tested before, during and after x-ray
irradiation (un-biased)
= work on irradiation test with biased devices is in progress

* Experimental results confirm the simulation results
 MZMs with a deep etch waveguide show generally low radiation hardness

 MZMs with a shallow etch waveguide and high doping concentrations are
much harder against TID (>2MGy) than other designs

= can reach detector regions where VCSELs cannot be installed

= For these devices an increase in phase shift could be observed before degradation
starts

21
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