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For that purpose, CERN

• operates the Large Hadron Collider (LHC).
 proton-proton collision at 14TeV, 40MHz

• hosts High Energy Physics (HEP) experiments.
 ALICE, ATLAS, CMS, LHCb, etc.

• develops required technologies.
 (opto)-electronic data links, sensors, vacuum, cooling, etc.

CERN conducts research to find answers to 
fundamental questions about our universe
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Radiation-hard fiber optic links are the 
backbone of the experiments’ read-out systems

10,000s of fiber optic
links (<200m)

...
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computer control cavern
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electronics
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LHC currently runs at nominal luminosity.

Upgrade to High-Luminosity (HL)-LHC around 2024 will increase luminosity by 5x.

 5x higher radiation levels in innermost detector regions

1-MeV neutron fluence up to 3 × 1016𝑛/𝑐𝑚2

Total Ionizing Dose (TID) of at least 1𝑀𝐺𝑦

HL-LHC luminosity upgrades will 
entail more particle collisions

 new optical transceivers that can withstand expected radiation 
levels in HL-LHC are required to read-out sensor data

during 10-year operational lifetime

pixel tracker

strip tracker

encap
calori-
meter

CMS Detector
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Neutron-induced increase in threshold current and decrease in slope efficiency for Vertical 

Cavity Surface Emitting Lasers (VCSELs) cannot be compensated for beyond the capabilities of 

the driving electronics.

no tight integration with detector modules possible in harshest environments of HL-LHC

Lasers degrade too much to be considered 
for innermost detector regions

# of neutrons per cm2 (from [1])

laser exclusion (>6e15n/cm2)
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Technology promises:

CMOS-compatible  low cost devices

Integration with electronic circuits  chips with reduced power & increased functionality

Our hope: 

Radiation-hardness similar to those of silicon pixel sensors currently used in HEP experiments

 Silicon Photonics (SiPh) Mach-Zehnder modulator is being investigated

Silicon Photonics as alternative: CMOS-
compatible electro-optic integrated circuits
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Phase modulation in the arms of an Mach-Zehnder 
interferometer leads to amplitude modulation

Schematic of an interferometric Mach-Zehnder Modulator (MZM)
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Phase modulation in the arms of an Mach-Zehnder 
interferometer leads to amplitude modulation

Schematic of an interferometric Mach-Zehnder Modulator (MZM)
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Voltage-induced carrier depletion in phase shifter 
diode results in phase shift of light

hole density at 0V bias
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Carrier density change leads to change in material’s refractive index (Plasma Dispersion Effect).

Guided mode sees a change in its effective refractive index neff.

Accumulated phase shift of light after traveling through phase shifter of length L: 

Δ𝜙 =
2𝜋Δ𝑛𝑒𝑓𝑓𝐿

𝜆
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Phase shift can be determined by 
measuring MZMs’ transmission spectra

phase shift given by

∆𝜙(𝑉) =
2𝜋Δ𝜆(𝑉)

𝐹𝑆𝑅

 the larger the phase 
shifter the more efficient 
the device
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Silicon Photonic (SiPh) Mach-Zehnder Modulators (MZMs) show no significant 

performance degradation due to displacement damage.

But: devices are very sensitive to ionizing radiation [3].

 Can MZM design be improved to increase resistance to ionizing radiation?

SiPh MZMs show high resistance 
against displacement damage
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Higher doping levels in MZM can 
mitigate effect of ionizing radiation.

Simulations indicate that changes to MZM design can 
improve resistance against ionizing radiation

doping concentration (cm-3)
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MZM’s failure mechanism can be attributed to large density of positive trapped charge 

in SiO2 which pinches-off holes in waveguide from contact [4].

Lower etch depth can delay carrier 
pinch-off.
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3 types of phase shifter diodes were 
evaluated for their radiation hardness

interleaved pn-junctions
deep etch depth

L=0.5mm, 1.0mm, 1.5mm

lateral pn-junctions
deep etch depth

L=1.9mm

lateral pn-junctions
shallow etch depth

L=1.9mm

deep etch
L deep etch

L shallow etch
L

In addition: Samples with two different p- and n-doping concentration 
in the waveguide were fabricated in 2015 by imec [5]
• nominal doping
• 2x nominal doping

+ highest modulation efficiency
- lowest modulation bandwidth

● medium modulation efficiency
● medium modulation bandwidth

+ highest modulation bandwidth
- lowest modulation efficiency
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All measurements were done 
at die-level on a probe-station

die: 5 x 5 mm2

opto-electrical probe station

grating
coupler

waveguide optical fiber
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MZM samples were exposed to increasing 
TID and characterized after each dose-step

Dice were not bonded to PCB ➔ not biased during irradiation

No annealing between and after irradiation steps

Irradiation and measurements at room temperature

pre-irradiation characterization

x-ray exposure (14.05𝐺𝑦/𝑠)

post-x-ray characterization

devices still 
working?

yes

increase dose

no
stop
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Independent of MZM length and doping concentration

• only 50% phase shift remains at 50𝑘𝐺𝑦

• No phase shift measurable for TID levels > 150𝑘𝐺𝑦

 design not of interest to HEP applications

Phase shift of MZMs with interleaved 
junctions vanishes around 100kGy

L
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MZMs with lateral junction withstand higher 
TID despite having the same etch depth

L

deep etch

Independent of wDop and doping concentration

• No significant phase shift degradation up to 100𝑘𝐺𝑦

• No phase shift measurable for TID levels > 200𝑘𝐺𝑦

 slightly better than MZMs with interleaved junction 
but still degrade too fast
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Reducing the etch depth greatly improves 
the radiation hardness

L

shallow etch

• No degradation until 2000𝑘𝐺𝑦 but at higher TID for samples with nominal doping

• No degradation up to 3100𝑘𝐺𝑦 for samples with 2x nominal doping

• Phase shift enhancement before samples start to degrade

 Shallow etch depth and high doping concentration increases resistant against 
ionizing radiation significantly; candidate devices for application in HL-LHC
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Simulation performed for deep etch MZM 
w/ nominal doping according to model 
proposed in [4].

Parameter fitting for shallow etch MZM 
and MZMs with 2x nominal doping is 
ongoing work.

Simulations show that pinch-off of holes 
causes phase shift degradation
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• LHC luminosity upgrades will require new optical transceivers with improved 
radiation hardness

• SiPh MZMs are therefore investigated as alternative to VCSELs because these 
cannot be employed in harshest radiation regions

• Simulation results indicate that the doping concentration and the etch depth 
affect the radiation hardness of MZMs

• SiPh test chip was designed and tested before, during and after x-ray 
irradiation (un-biased)

 work on irradiation test with biased devices is in progress

• Experimental results confirm the simulation results

• MZMs with a deep etch waveguide show generally low radiation hardness

• MZMs with a shallow etch waveguide and high doping concentrations are 
much harder against TID (>2MGy) than other designs

 can reach detector regions where VCSELs cannot be installed

 For these devices an increase in phase shift could be observed before degradation 
starts

Summary
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