Overview PhoeniX software

intel

DCI

How to design a photonic chip?

Marcel Zeiler

3/4/2015

This research project has been supported by a Marie Curie Early European Industrial Doctorates Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2012-316596-ICE-DIP)

CERN openlab

Z

MAR

ENTH FRAMEW

- PhoeniX's software packages
- Process Design Kits (PDKs) with PhoeniX software

0

0

 \bigcirc

Example: How to design a Multimode-Interference-Coupler (MMI)

0

PhoeniX Field- & OptoDesigner

FieldDesigner

- FD and FMM mode solver (straight and bend waveguides)
- TO, EO, 3D ring resonator

- OptoDesigner
- Mode propagation simulation (BPM, BEP, FDTD)
- object oriented mask layout
- Automation for Functional DRC, mask assembly and GDSII generation

Filarete ASPIC

- Integrated photonics circuits simulation and design
- Allows analysis of larger / more complex circuits
- Response in spectral domain
 - Calculates amplitude, phase, group delay, dispersion, and polarization
- ASPIC comes with a large library of modules
 - Waveguides, bends, MMI's, rings, DC, splitter, MZ, phase modulator, crossings

0 **Process flow virtualization** Based on process flow Visualize cross section Library of different recipes & models **Benefits Essential** for process development • Avoids costly mistakes Improves yield

Select technology

• Define specs

DCU

0

Building blocks from PDKs

- Perform simulation
- Generate Design

Integration of all different modules

Circuit Simulator

CERNopenlab

0

 \bigcirc

Software Environment

Integration of all different modules

CERNopenlab

DCU

Example: How to design an 1x2 MMI 1

Define waveguide (WG): width, height, material Create WG cross-section 2. in FieldDesigner (FD) 3. Set up simulation (algorithm, calculation) window) Find number of modes 4 and their eff. refractive index for MMI's width with FD

CERNopenlab

Example: How to design an 1x2 MMI 2

Import data from FD to 5. **OptoDesigner** (OP) Create top view of 6. device in OP 7. Set up simulation 8. Use BPM simulation to find field distribution in MMI **Optimize MMI length**, 9. output port gap 10. Export mask

CERNopenlab