

What's New for Machine Learning with Oracle Database and Hadoop

Eric Grancher Manuel Martín Márquez

Outline

- CERN Data environment
- Introduction to Machine Learning
- Our Machine Learning path
 - Introduction to a real use case
 - R prototyping and validating ideas
 - First Scalable attend Oracle R Enterprise
 - Hadoop and the analytic transformation
 - Oracle Advance Analytics for Hadoop
 - Spark
 - TensorFlow + Spark

CERN Database Environment

AT

SCAI

LEMON

INT1

ATO

CSD

ALIONR

80

90 100 110

ac	tivity			
_R	COMPR			
DAR	LHCBONR			
RAC	CMSONR		October 2012	December 2015
1R	QPSR	Max size	ACCLOG 136TB	ACCLOG 352TB
NR	CMSB	Max redo	ACCMEAS 27TB / month	QPSR 115TB / month
B				

CERN Control Systems

- IoT and Control Syste
 - Cryogenics
 - Vacuum
 - Machine Protection
 - Power Converters
 - QPS
- Accelerator Logging Service
 - ~ 275 GB/day
 - Storing more than 50 TB / year
 - Data acquisition
 - CERN accelerator complex
 - Related subsystems
 - Experiments
 - Around 1 million signals

Machine Learning (ML)

- ML is a branch of artificial intelligence:
 - Uses computing based systems to make sense out of data
 - Extracting patterns, fitting data to functions, classifying data, etc
 - ML systems can learn and improve
 - With historical data, time and experience
 - Bridges theoretical computer science and real noise data.

ML in real-life

Completed • \$13,000 • 1,785 teams

θ

•2.

0

Tim Salimans
 nhlx5haze

Higgs Boson Machine Learning Challenge

Mon 12 May 2014 - Mon 15 Sep 2014 (2 years ago)

Competition Details » Get the Data » Make a submission

Use the ATLAS experiment to identify the Higgs boson

Discovery of the long awaited Higgs boson was announced July 4, 2012 and confirmed

Supervised and Unsupervised Learning

- Unsupervised Learning
 - There are not predefined and known set of outcomes
 - Look for hidden patterns and relations in the data
 - A typical example: Clustering

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4
7	4.6	3.4	1.4	0.3
8	5.0	3.4	1.5	0.2
9	4.4	2.9	1.4	0.2
10	4.9	3.1	1.5	0.1

Supervised and Unsupervised Learning

- Supervised Learning
 - For every example in the data there is always a predefined outcome
 - Models the relations between a set of descriptive features and a target (Fits data to a function)
 - 2 groups of problems:
 - Classification
 - Regression

Supervised Learning

- Classification
 - Predicts which class a given sample of data (sample of descriptive features) is part of (**discrete value**).

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	Ø.2	setosa
Z	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa

- Regression
 - Predicts continuous values.

Machine Learning as a Process

Largest Cryogenics Installation

- 50k I/O, 11k actuators, ~5k control loops
- Control:
 - ~100 PLCs (Siemens, Schneider)
 - ~40 FECs (industrial PCs)
- Supervision: 26 SCADA servers

Use Case: Faulty Cryogenics Valve Detection

- What is the objective?
 - Predict faulty valves before they actually fail
- How?
 - Valve receive an aperture order value (aperture order)
 - Effective aperture realized by the valve (aperture measured)
 - Analyzing the difference between both (**S** = aperture order aperture measured)

Faulty Cryogenics Valve Detection with R

- Signals used:
 - S = aperture order aperture measured
- Features extractions based on S
 - Variance
 - Percentile 99.9
 - Rope distance R(S)
 - Noise Band B(S) (Pxx be the power spectrum of the $\sum_{k=1}^{\sum Pxx(k)}$ signal S, from 0 to 0.5Hz, where S has been previously mean-centred).

 $R(S) = \frac{1}{N} \sum_{i=2}^{N} |S(i) - S(i-1)| \qquad B(S) = \frac{\left|\sum_{k=1}^{N} P_{xx}(k)\right|}{\sum_{k=1}^{N} P_{xx}(k)}$

- Automatic Faulty Valves Detection System
 - SVM Support Vector Machine

Faulty Cryogenics Valve Detection with R

```
1 #Libraries to be used
                                                                                                                                                                  Q
                                                                                          🛑 Global Environment 🗸
2 library(e1071)
                                                                                         Data
3 library(aaplot2)
                                                                                         CV910_dataset
                                                                                                                  5053287 obs. of 7 variables
  library(plyr)
4
                                                                                          valve.features
                                                                                                                  54 obs. of 7 variables
  library(bspec)
5
6
   library(randomForest)
7
   #Reading the dataset from a CVS file (about 200Mb - reduced version)
8
   CV910_dataset <- read.csv("~/Documents/IT-DB-DBB/Projects/EN Department/POST MORTEM/Data/CV910_dataset.csv")
9
10
11
   #Calculating the diference signal
   CV910 dataset$<-CV910 dataset$order-CV910 dataset$measure
12
13
14
   #Calculating the features (agreedated values)
15
   #Secuential Calculation
16
17
   valve.features <- ddply(CV910_dataset, c("cycle_id"), summarize,</pre>
                                var = var(s).
18
19
                                max = max(s).
20
                                \min = \min(s).
21
                               rope_dist = sum(abs(diff(s)))/length(s),
22
                               bs=(sum(welchPSD(s-mean(s), seglength=512, two.sided = TRUE)$power)^2)/(2*512*sum(welchPSD(s-mean(s), seglength=512, two.sided = TRUE)$power^2)),
23
                               status = unique(status)
24
25
   #Training the model - pretty fast training
26
   svm_mod <- svm(status ~ var + max + min + rope_dist + bs, valve.features,na.action=na.omit)</pre>
28 rf_mod <- randomForest status ~ var + max + min + rope_dist + bs, valve.features, na.action=na.omit, ntree=50, norm.votes=FALSE)</p>
```


Our experience

- Excellent for prototype potential solution or validate idea
 - Fast development using standard CRAN packages such as CARET etc.
 - Large number of models and statistic functions (+7500 packages) covering a wide range of fields
 - Data Exploration
- Use the existing skills
 - R is widely use in the domain
- Move the data is very expensive
 - The data need to be extracted from DB and generate files CSV
 - SQL, Java API, Custom Extraction Applications (Timber)
- Hard to deploy models in production and scale the solutions as the data grown
 - Data limited by memory size.
 - Few packages but very limited scalability the models themselves do not scale
 - Foreach, Snow, Rmpi, BatchExperiments package (BatchJobs)

Why ORE? - ORE benefits

- A database-centric environment for analytical processes in R
 - Allows to use the database server to run R scripts (scalability & performance)
 - Eliminate memory constraint of client R engine

Transparency Layer

Transparently analyze and use data in Oracle Database through R

- Tables as R native data frames
- Enables users to take advantage of data-parallel and task-parallel execution through Oracle Database

Cryo Valves - Parallel Features Extraction in ORE

(dat) {		
	Instrument/Actuators	Total
nal to work with DER-dat\$APERTURE_MEASURE :ions :\$VALVE) :\$CYCLE_NUMBER) it\$STATUS)	Temperature [1.6 – 300 K] Pressure [0 – 20 bar] Level Flow Control valves On/Off valves Manual valves Virtual flow meters	10361 2300 923 2633 3692 1835 1916 325
diff(s)))/length(s) ean(s),seglength=512,two.sided = TRUE)\$power **512*sum(pxx^2))	93600 points per cycle (abo	4833 out 24 ho
res = cycle, = valve, = status, , , , st = rope_dist, ;;		
a, .st = rope_dist, :)		

Cryo Valves — Parallel Features Extraction in ORE

- 37 #Create in-db partitions and proccess them in parallel (VALVE_READS_CL_TRA is the name of the table in our db)
- 38 #Lazy evaluation!!!

41

43

44

48

49 50

51

52

53

56

59

```
39 ore.valve.features <- ore.groupApply(VALVE_READS_CL_TRA [,c('READ_ID','CYCLE_NUMBER','VALVE','APERTURE_ORDER','APERTURE_MEASURE','STATUS')],
40 INDEX=VALVE_READS_CL_TRA$CYCLE_NUMBER.</pre>
```

features,

42 #Return value signature

- FUN.VALUE =
- data.frame(Cycle = numeric(),
- 45 Valve = character(), 46 Status = character(),
- 46 Status = character 47 Var = numeric().

```
Var = numeric(),
Max = numeric(),
```

```
Min = numeric(),
Rope_dist = numeric(),
Bs = numeric())
```

```
,parallel=TRUE)
```

54 #Order the output

```
55 row.names(ore.valve.features)=ore.valve.features$Cycle
```

```
57 #Pulling the fatures from DB for local processing
```

```
58 valve.features<-ore.pull(ore.valve.features)</pre>
```

```
60 #Training the models locally
```

61 rf_mod <- svm(Status ~ Var + Max + Min + Rope_dist + Bs, valve.features,na.action=na.omit)

Our experience

- No need to move data
 - It is faster to process it in-DB with ORE using the appropriate degree of parallelism
- DB nodes already prepared for the workload
 - Simplifies the infrastructure
- Write/adapt R code is straight forward
 - Thanks to transparency layer and embedded R execution
 - Tables and Views as R dataframes
- Still problems scaling
 - Scalability determined by RAC installations
- Need to differentiate between production and analytics environments
 - Risk on affecting the production environment performance by running in-database analytics
- Analytics developments in-database
 - Risk on data security and resources competition

CERN Accelerator Logging Service 2.0

New Landscape bring new challenges

- Better Performance on bigger datasets
 - Big Data queries: Impala, Spark SQL ⁶
- Leverage analytics capabilities
 - Spark Analytics: Python, ML, R
- More heterogeneous data access models

Credit: BE-CO-DS

CERN Accelerator Logging Service

Cryo Valves – ORAAH

Oracle R Advanced Analytics for Hadoop

```
library(ORCH)
 Z
 3
    #Setting up the connection to Spark installation
 4
    spark.connect(master="yarn-client",memory="86",dfs.namenode="-----")
 5
 6
    #Preparing the data on HDFS
 7
    train <- hdfs.put(training)</pre>
 8
    test <- hdfs.put(testing)</pre>
 9
10
    #Let focus now in model generation and training
11
12
    #Spark MLlib algorithms available from R in ORAAH (source data can be CSVs in HDFS or HIVE tables)
    model <- orch.ml.svm(formula = status ~ rope_dist + bs + mean + var + max ,data = train)</pre>
13
14
15
    #Predincting on test and writing back the results to HDFS
16
    pred <- predict(model, newdata = test)</pre>
17
    hdfs.write(pred, outPath = "Prediction")
```


library(rpart)

1

Our experience

- No need to move data the analysis in done where the data is
 - Access to database or Hive tables transparently
- Memory is not a problem anymore
 - The analysis is not anymore limited by the dataset size
 - Simplifies the infrastructure transparent use of hadoop technologies
- Write/adapt R code is straight forward
 - Same principals than ORE no need to acquire a new set of skills
 - Background use of Spark machine learning capabilities
- Limited functionality
 - When using ORAAH for Machine learning in scalable way the functionality is limited to Spark Machine Learning libraries
 - No as fast pace as Spark itself Why do we need to wait
- Commercial VS open source

Machine Learning with Spark

- Why Apache Spark for Machine Learning
 - No memory limitations
 - Compatibility Scala, R, Python
 - General purpose
 - Not only machine learning also advanced data preparation, feature engineering, parameter tuning and model selection etc.

Spark

- New Skills required
 - RDD-based API (spark.mllib)
 - DataFrame-based API (spark.ml)
 - Pipelines Concept (CARET package does in R)
 - Cross Validation
 - Parameter tuning using parameter grid
- Fast Pace Evolution

Machine Learning with Spark

Cross Validation

• Repeat the construction of the model on different subsets of the available training data and then evaluate the model only on data not seen during training

ONE ITERATION OF A 5-FOLD CROSS-VALIDATION:					
1-ST FOLD:	000000				
	testset	trainset			
2-ND FOLD:	000000	00000			000000
	trainset	testset	· · · ·	trainset	
3-RD FOLD: 000000000000000000000000000000000000				000000	
	trainset		testset	train	iset
4-TH FOLD:	003030	000000	000000		000000
		trainset		testset	trainset
5-TH FOLD:	003030	000000			
		trai	nset		testset

Machine Learning with Spark

Model Tuning

- ML models have several parameter
 - there is no analytics formula to calculate appropriate values
- These parameters control the complexity of the model
 - bad performance
 - over-fitting
 - etc.

Cryo Valves – Spark

In []: from pyspark.ml.classification import RandomForestClassifier

```
#select the features to used
features = ['var, max, min, rope_dist, bs']
```

#We have to shape our dataset before we can use some Spark ML algorithms with it. #First, we need to create a new column containing a Vector with all the features. #That vector will be the input features used by the ML for the model training. assembler = VectorAssembler(inputCols=features, outputCol="features")

rfClassifierCV = RandomForestClassifier(labelCol="status", featuresCol="features")

```
#Setting the pipeline
rfPipelineCV = Pipeline(stages=[assembler, rfClassifierCV])
```

```
#Prepare de evaluator, CV configuration and parameter tuning
evaluatorCV = BinaryClassificationEvaluator(labelCol="indexedLabel")
```

```
#3 different models will be evaluated 5,10 and 15 number of trees
paramGrid = ParamGridBuilder().addGrid(rfClassifierCV.numTrees, [5,10,15]).build()
```

```
#Definition of a the CV pofile
crossValidator = CrossValidator(estimator=rfPipelineCV, estimatorParamMaps=paramGrid, evaluator=evaluatorCV, numFolds=3
```

#Now we perform the computation all the prevoius code is lazy evaluated
rfClassifierCV = crossValidator.fit(train)
rfPredictionCV = cvModel.transform(test)

Machine Learning with TensorFlow

- Why TensorFlow for Machine Learning
 - Spark machine learning capabilities are really limited
 - Number of models
 - Customization capabilities
- Overcome in term of performance any of the previous technologies
 - Spark is slow on training models
- State-of-the-art algorithms available
 - Deep-learning
- New skill need to be understood
 - Tensor concept
- Model freedom comes with a price
 - Coding

Machine Learning with TensorFlow+Spark

- No memory limitations
 - Bigger than memory datasets treated transparently
- Parallelization
 - Tensorflow profit from Spark partitioning concepts to improve the user control over parallelization

