My Thoughts about
Parallelization in HEP

Alfio Lazzaro

CERN Openlab
Multicore panel @ ACAT10, Jaipur



Use cases

* 5 main use cases:
— Events Acquisition, online (High Level Trigger (HLT))
— Reconstruction
— MC Simulation
— Data analysis: event selection and results extraction
(e.g. fitting)
e Quite distinct problems for parallelization

— Efforts should be consider differently for each use
cases

— Of course there are overlaps...



Looking more carefully (1)

* HLT requires high throughput
— Suitable candidates for GPUs?

* Reconstruction suffers |/O bounds and memory
usage
— Efforts to reduce the memory footprint, using COW or
KSM techniques
— Still to keep in account a real parallelization (like
AthenaMP or Parallel Gaudi) for data merging at the end

* MC simulation is similar to reconstruction, but it
requires a distinct parallelization, i.e. Geant

parallelization



Looking more carefully (2)

e Data analysis:
— Event selection well performed in parallel using
PROOF (data parallelism)
 Still large dataset, good data parallelism
— Fitting procedures (or similar techniques for results
extractions) require a different approach: algorithm
parallelism
* Small samples, intensive CPU-time algorithms
* Few examples on the market, still a lot to do

* |n the follow I will talk about possible strategies in
data analysis for results extractions



Caveats

At the moment there is not (IMO) a clear picture
about what will be data analysis at LHC (data
needed!!!)

— In the first phase it is reasonable to think that with
small samples and (as usual for new experiments and
in case of search for new phenomena) simple analysis
will be used (events counting)

* Reduce systematic errors estimations
— Efforts will be concentrated to have results in a
reasonable time schedule

* In other words, the customers (physics analysts’)
do not require complex algorithm

— Fitting a 1D histogram it is a simple operation, do not
require parallelization



But...

e Other experiments with data (BaBar, Belle, BES, CDF,
Focus, DO,...) have already started to do complex
analysis where parallelization can be a good
(mandatory) solution to speed-up execution

— In the Babar community we did a huge effort to
* Not forget the upgrade for LHC (sLHC) and new
experiments (SuperB-factory)
— They require a jump of factory >100 (!!) in 5 years
timescale (Moore law is not enough...)
 Other communities (HPC, astrophysics, chemistry,
biologist,...) have similar problems:

— LSST has a rate of raw data of 60000 MB/s every 40
seconds (Atlas is 300 MB/s): fast analysis is mandatory to
screaming the data



Other problem

In data analysis there is not a general common framework (like
reconstruction) for different analysts’

— In general everybody wants the “power” to obtain the final results, i.e.
his own version of data analysis code

This means a “plethora” of programs

— Not always based on the same base-code (different languages, Matlab,
different algorithms...)

Advantage: possible to make comparisons to spot bugs out
Disadvantage: “sometimes” all the versions are not well optimized

— Last year Babar sent a request to do a parallel version of a fitting code
to ROOT people. The programs had taken about 1 hour. After few
optimizations (not parallelization) now it takes 3 minutes...

* Francois Le Diberder (current spokesperson): are we wasting resources? Shall
we optimize our data analysis programs?

— You can image the possible scenario if we move to parallel version of
the code that are, by definition, more difficult to develop and debug...



My Conclusions

Need to individuate a set of data analysis techniques and parallelize them
— Which ones? Depends on customers (e.g. RooFit/RooStats projects)
Individuate the most time-expensive part and write them as kernel
function (plugins) that you can run in parallel inside you current program
— Not forget optimization!
— Not easy to run everything in parallel, unless you want to rewrite everything!

— Run the different kernel exploring all kind of possible parallelization on the
market (GPUs, multi-cores, vectors, ...)

In some cases our algorithms are old (like CERNLIB Minuit)
— Not good algorithms to scale to many-cores
— Need to think about how we can improve them

Common way to procedure: same patterns, same techniques, same
languages, same libraries, common framework (!!)
— Concentrate the efforts. At the moment there is not a enormous demand for

parallelization
e AFAIK about 10 groups are working on data analysis parallelization

Be ready for the future (which is not far away)...



