
Multicore Panel
Introduction

Sverre Jarp

CERN
openlab

CERN

ACAT 2010 – 25 February 2010

Sverre Jarp - CERN

ACAT 2010 – Multicore panel

2

Panelists:

 Sverre Jarp/CERN: CPU

 Mohammad Al-Turany/GSI: GPU

 Alfio Lazzaro/CERN: Applications

 Mukesh Gangadhar: Vendor tools

Sverre Jarp - CERN

ACAT 2010 – Multicore panel

3

Moore’s law
 We continue to double the number of transistors

every other year(*)

 The consequence
 Single core  Multicore Manycore

(*) But, the derivative “law” which
stated that the frequency would
also double is no longer true!

Adapted from WikipediaFrom WikipediaFrom A. Nowak

Sverre Jarp - CERN

ACAT 2010 – Multicore panel

4

Real consequence of Moore’s law
 We are being “snowed under” by transistors:

 More (and more complex) execution units
 Longer SIMD vectors
 More and more cores
 More hardware threading

 In order to benefit we need to “think parallel”

 Data parallelism
 Task parallelism

 We also need to think forward scalability

Sverre Jarp - CERN

ACAT 2010 – Multicore panel

5

7 dimensions of CPU performance
 First three dimensions:
 Superscalar
 Pipelining
 Vector/SIMD width

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

SIMD width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets

Multithreading

Sverre Jarp - CERN

ACAT 2010 – Multicore panel

6

In the days of the Pentium (1995)
 First three dimensions:
 Superscalar (only two ports)
 Pipelining (OK)
 No vectors

 Next dimension is a “pseudo”
dimension:
 No hardware multithreading

 Last three dimensions:
 No cores
 Hardly any dual socket systems
 Multiple compute nodes (OK)

Superscalar

Pipelining

Nodes

Sockets

Sverre Jarp - CERN

ACAT 2010 – Multicore panel

8

The move to many-core systems

 Examples of “slots”: Sockets * Cores * HW-threads
 Basically what you observe in “cat /proc/cpuinfo”

 Conservative:
 Dual-socket Intel quad-core Nehalem: 2 * 4 * 2 = 16
 Quad-socket Intel Dunnington server: 4 * 6 * 1 = 24

 Aggressive:
 Quad-socket AMD Magny-Cours (12 core) 4 * 12 * 1 = 48
 Quad-socket Nehalem-EX “octo-core”: 4 * 8 * 2 = 64
 Quad-socket Sun Niagara (T2+) processors w/8 cores and 8

threads: 4 * 8 * 8 = 256
 Radeon ATI/AMD GPU (w/Stream Processors): 1600

 When planning new software: Thousands !!

Sverre Jarp - CERN

ACAT 2010 – Multicore panel

9

Concurrency in HEP

 We are “blessed” with lots of it:
 Entire events
 Particles, tracks and vertices
 Physics processes
 I/O streams (ROOT trees, branches)
 Buffer handling (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

Sverre Jarp - CERN

ACAT 2010 – Multicore panel

10
René Brun, ACAT2010, Jaipur ROOT: design,development, evolution 10

 The GRID is a parallel engine. However it is unlikely
that you will use the GRID software on your 32-core
laptop.

 There is a lot of work to be done within ROOT to use
parallelism internally or making ROOT-based
applications more easily parallelizable.

 Think TopDown and BottomUp

Coarse grain: job, event, track
Fine grain

vectorization

Design for Parallelism

10x100x

Sverre Jarp - CERN

ACAT 2010 – Multicore panel

11

Conclusions

 Think “parallel”

 This may often require new/modified
algorithms

 Think ”forward scalability”

 GPUs will help us think “vector”

	Slide Number 1
	Panelists:
	Moore’s law
	Real consequence of Moore’s law
	7 dimensions of CPU performance
	In the days of the Pentium (1995)
	The move to many-core systems
	Concurrency in HEP
	Design for Parallelism
	Conclusions

