Multicore Panel

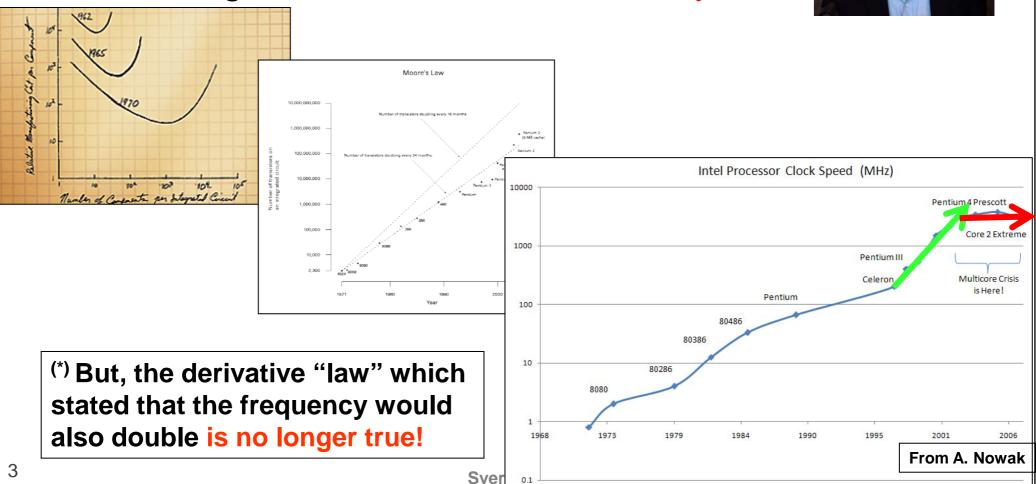
Introduction

Sverre Jarp

CERN openlab

CERN

ACAT 2010 – 25 February 2010


Panelists:

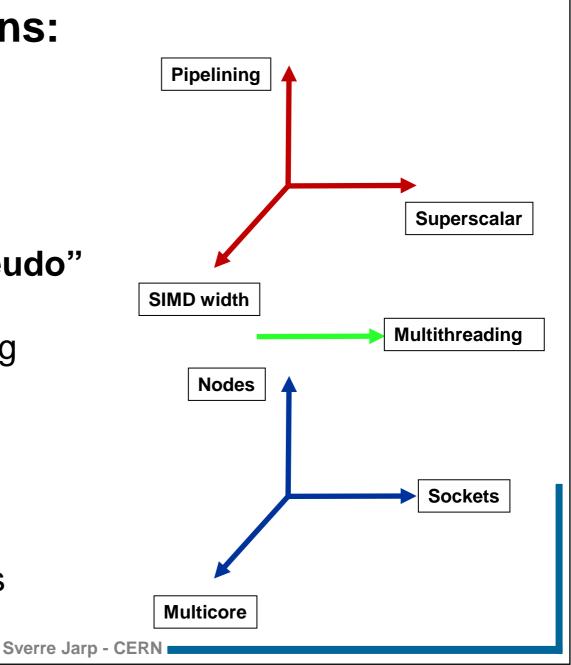
- Sverre Jarp/CERN: CPU
- Mohammad Al-Turany/GSI: GPU
- Alfio Lazzaro/CERN: Applications
- Mukesh Gangadhar: Vendor tools

Moore's law

- We continue to double the number of transistors every other year^(*)
 - The consequence
 - Single core \rightarrow Multicore \rightarrow Manycore

Real consequence of Moore's law

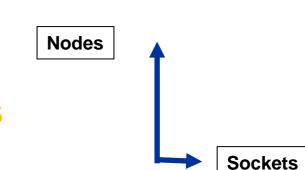
- We are being "snowed under" by transistors:
 - More (and more complex) execution units
 - Longer SIMD vectors
 - More and more cores
 - More hardware threading
- In order to benefit we need to "think parallel"
 - Data parallelism
 - Task parallelism
- We also need to think forward scalability



7 dimensions of CPU performance

- Superscalar
- Pipelining
- Vector/SIMD width
- Next dimension is a "pseudo" dimension:
 - Hardware multithreading
- Last three dimensions:
 - Multiple cores
 - Multiple sockets
 - Multiple compute nodes

SIMD = Single Instruction Multiple Data



In the days of the Pentium (1995)

- First three dimensions:
 - Superscalar (only two ports)
 - Pipelining (OK)
 - No vectors
- Next dimension is a "pseudo" dimension:
 - No hardware multithreading
- Last three dimensions:
 - No cores
 - Hardly any dual socket systems
 - Multiple compute nodes (OK)

Pipelining

6

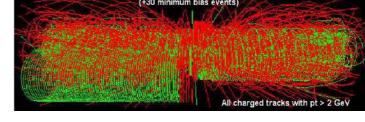
The move to many-core systems

Examples of "slots": Sockets * Cores * HW-threads

- Basically what you observe in "cat /proc/cpuinfo"
- Conservative:
 - Dual-socket Intel quad-core Nehalem: 2 * 4 * 2 = 16
 - Quad-socket Intel Dunnington server:

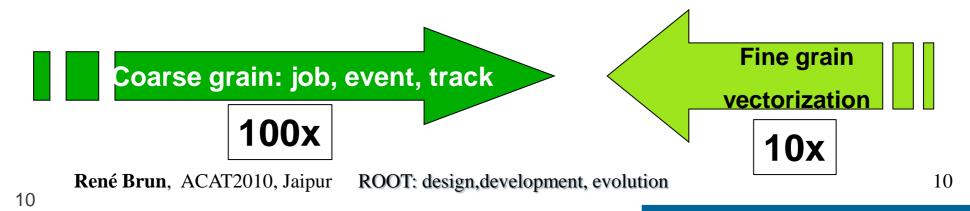
Aggressive:

- Quad-socket AMD Magny-Cours (12 core) 4 * 12 * 1 = 48
- Quad-socket Nehalem-EX "octo-core": 4 * 8 * 2 = 64
- Quad-socket Sun Niagara (T2+) processors w/8 cores and 8 threads: 4 * 8 * 8 = 256
- Radeon ATI/AMD GPU (w/Stream Processors): 1600
- When planning new software: Thousands !!


4 * 6 * 1 = 24

Concurrency in HEP

• We are "blessed" with lots of it:


- Entire events
- Particles, tracks and vertices
- Physics processes

- I/O streams (ROOT trees, branches)
- Buffer handling (also data compaction, etc.)
- Fitting variables
- Partial sums, partial histograms
- and many others
- Usable for both data and task parallelism!

Design for Parallelism

- The GRID is a parallel engine. However it is unlikely that you will use the GRID software on your 32-core laptop.
- There is a lot of work to be done within ROOT to use parallelism internally or making ROOT-based applications more easily parallelizable.
- Think Top→Down and Bottom→Up

Conclusions

- Think "parallel"
 - This may often require new/modified algorithms

Think "forward scalability"

GPUs will help us think "vector"