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Panelists:

 Sverre Jarp/CERN: CPU

 Mohammad Al-Turany/GSI: GPU

 Alfio Lazzaro/CERN: Applications

 Mukesh Gangadhar: Vendor tools
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Moore’s law
 We continue to double the number of transistors 

every other year(*)

 The consequence
 Single core  Multicore Manycore

(*) But, the derivative “law” which 
stated that the frequency would 
also double is no longer true!

Adapted from WikipediaFrom WikipediaFrom A. Nowak
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Real consequence of Moore’s law
 We are being “snowed under” by transistors:

 More (and more complex) execution units
 Longer SIMD vectors
 More and more cores
 More hardware threading

 In order to benefit we need to “think parallel”

 Data parallelism
 Task parallelism

 We also need to think forward scalability
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7 dimensions of CPU performance
 First three dimensions:
 Superscalar
 Pipelining
 Vector/SIMD width

 Next dimension is a “pseudo” 
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes 

SIMD width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Nodes

Multicore

Sockets

Multithreading
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In the days of the Pentium (1995)
 First three dimensions:
 Superscalar (only two ports)
 Pipelining (OK)
 No vectors

 Next dimension is a “pseudo” 
dimension:
 No hardware multithreading

 Last three dimensions:
 No cores
 Hardly any dual socket systems
 Multiple compute nodes (OK) 

Superscalar

Pipelining

Nodes

Sockets
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The move to many-core systems

 Examples of “slots”: Sockets * Cores * HW-threads
 Basically what you observe in “cat /proc/cpuinfo”

 Conservative:
 Dual-socket Intel quad-core Nehalem: 2 * 4 * 2 =   16
 Quad-socket Intel Dunnington server: 4 * 6 * 1 =   24

 Aggressive:
 Quad-socket AMD Magny-Cours (12 core) 4 * 12 * 1 = 48
 Quad-socket Nehalem-EX “octo-core”: 4 * 8 * 2 =   64
 Quad-socket Sun Niagara (T2+) processors w/8 cores and 8 

threads: 4 * 8 * 8 = 256
 Radeon ATI/AMD GPU (w/Stream Processors): 1600

 When planning new software: Thousands !!
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Concurrency in HEP

 We are “blessed” with lots of it:
 Entire events
 Particles, tracks and vertices
 Physics processes
 I/O streams (ROOT trees, branches)
 Buffer handling (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!
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René Brun,  ACAT2010, Jaipur ROOT: design,development, evolution 10

 The GRID is a parallel engine. However it is unlikely 
that you will use the GRID software on your 32-core 
laptop.

 There is a lot of work to be done within ROOT to use 
parallelism internally or making ROOT-based 
applications more easily parallelizable.

 Think TopDown and BottomUp

Coarse grain: job, event, track
Fine grain

vectorization

Design for Parallelism

10x100x
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Conclusions

 Think “parallel”

 This may often require new/modified 
algorithms

 Think ”forward scalability”

 GPUs will help us think “vector”
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