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What is the CERN openlab? CERN

A science-industry partnership to drive R&D
and innovation with over a decade of success

Evaluate state-of-the-art technologies in a
challenging environment and improve them

Test in a research environment today what intel.
will be used in many business sectors

tomorrow ORACLE
Train next generation engineers/employees SIEMENS

Disseminate results and outreach to new

audiences BEER L
Yandex

Sverre Jarp - CERN
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= Why worry about performance?
= Complexity in Computing

» Guidelines for SW design

* Some HEP examples

= Conclusions
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Why worry about performance? CERN

= My arguments:

= The “easy ride” disappeared: The frequency scaling we
enjoyed in the past does not exist any longer.
It stopped a decade ago!

= ..and, as a “by-product”, the CPU/GPU architectures are
becoming (much) more complicated

= Performance per watt: There are important thermal issues
associated with large scale computing

= Even when 1W processors exist!

= Performance per €: There are important cost issues
associated with large scale computing

= Even when using “commodity equipment”

Sverre Jarp - CERN




Moore’s law

= \We continue to double the number of
transistors every other year

= The consequences:
= CPUs
= Single core - Multicore > Manycore
= Hardware vector support
= Hardware threading

= GPUs
= Huge number of floating-point units

= Today, we commonly acquire chips with
1’000’000’000 transistors!

= Intel/AMD server chips and high-end GPU
devices are much more

= Kepler GK110: 7.1 billion transistors

Computer Architecture and Performance Tuning \ »
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“Intel platform 2015” (and beyond)

Today’s silicon processes:
= 32,28, 22 nm
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CERN

openlab

We are here

Being introduced.: I
= 14 nm (2013/14)

Increasing HW
Threads
Per Socket

In research:
= 10 nm (2015/16)

= 7nm (2017/18)

100+

10 —

I

HT

Multi-core Era
Scalar and

parallel applications

Many-core Era
Massively parallel
applications

LHC ddta

i
2003

T
2005

T
2007

i 1
2009 2011

2013

= 5nm (2019/20)

- Source: Intel

Each generation will push the core count:
= We are inside the many-core era (whether we like it or not) !

Sverre Jarp - CERN
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Complexity iIn Computing
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Archaic Computing Units -
= As “stupid” as 50 years ago

= Still based on the Von Neumann
architecture

= Primitive “machine language”

= Ferranti Mercury:

= Floating-point calculations
— Add: 3 cycles; Multiply: 5 cycles

- Todéyi
= Programming for performance

IS the same headache as in the
past

Sverre Jarp - CERN
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And the language is ancient, too! CERN
= Assembly/machine code!

..B1.31: # Preds ..B1.31 ..B1.30 # Infreq
movsd (%rsp), %xmm3 #94 .17
lea (%rbx,%rbx,2), %rcx #94 .36
movsd (%rsi,%rcx,8), %xmm2 #94 .40
incl %eax #93.42
movsd 8(%rsi ,%rcx,8), %xmmO #94 .40
cmpl %edx, %eax #93.39
mullsd Y%oxmm2, %xmm2 #94 .40
mullsd %xmmO, %xmmO #94 .40
movsd 16(%rsi,%rcx,8), %xmml #94 .40
addsd %xmmO, %xmm2 #94 .40
mullsd Y%xmml, %xmml #94 .40
movl %eax, %ebx #93.42
addsd Joxmml, %xmm2 #94 .40
sqrtsd %xmm2, %xmm2 #94 .40
addsd Y%oxmm2, %xmm3 #94 .17
movsd %xmm3, (%rsp) #94 .17
jb ..B1.31 # Prob 82% #93.39

9 Sverre Jarp - CERN




And, even assembly is “too high level” cern

10
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openlab

= Intel translates x86 assembly instructions
= Into micro-operations

= NVIDIA translates PTX (virtual assembly)
= Into machine instructions

= S0, what does it mean (?) when the hardware tells
you:

= “XXN instructions executed”

Sverre Jarp - CERN



Performance: A complicated story! CERN
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openlab

We start with a concrete, real-life problem to solve

= For instance, simulate the passage of elementary particles
through matter

We write programs in high level languages
= C, C++, CUDA, JAVA, Python, etc.

A compiler (or an interpreter) transforms the high-level code to
machine-level code

We link in external libraries

A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

In most cases, we have little clue as to the efficiency of this

transformation process
Sverre Jarp - CERN
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A Complicated Story (in 9 layers!) CERN

12

openlab

Problem
Design, Algorithms, Data
Language/Source progra

Compilers; Libraries
System architecture
Instruction set architectur
u-architecture
Circuits
Electrons

= We must avoid being fenced into a single layer!

Adapted from Y.Patt, U-Austin

Sverre Jarp - CERN
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In the days of the Pentium CERN

openlab

= Life was really simple:

Pipelining

= Basically two dimensions
= The frequency of the pipeline Superscalar

= The number of boxes

= The semiconductor industry
Increased the frequency

Nodes

= We acquired the right number of
(single-socket) boxes

Sockets

13 Sverre Jarp - CERN
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QU s B
. e
Frequency scaling 2 2Ll
= The 7 “fat” years of frequency scaling in HEP
= The Pentium Pro in 1996: 150 MHz
= The Pentium 4 in 2003: 3.8 GHz (~25x)
= But, this was 10 years ago!
m S|nce then 00000 Intel Processor Clock Speed (MHz)
= Core 2 systems: —>
" s Gz il
= Multi-core //
= Recent CERN purchase: | /
= [ntel Xeon E5-2630L T
- uonlyn 200 GHZ N From A. Nowak/openlab

14 Sverre Jarp - CERN
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Accelerators (1): Nvidia Kepler GPU  cern

= Made available in 4Q2012

= GK110 GPU

= 3x DP performance:

= >1 Teraflops
GK110 GPU

= |[nnovative design:

= SMX (streaming
multiprocessors)

* Dynamic parallelism for Considerable interest
spawning new threads in the HEP community

= Hyper-Q enables multiple
CPU cores to utilise CUDA
cores

15 Adapted from Nvidia
Sverre Jarp - CERN
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Accelerators (2): Intel Xeon Phi CERN

openlab

* Intel Many Integrated Cores (MIC):
= Announced at ISC10, available 2 ¥ years later

= Based on the x86 architecture, 22nm, ~1.0 GHz

= Many-core (up to 62 cores) + 4-way multithreaded +
512-bit vector unit

= Limited memory: 8 Gigabytes

In Order, 4 In Order, 4
threads, SIMD-16 threads, SIMD-16

I$ D$ 1S D$

Memory Controller
Memory Controller

In Order, 4 In Order, 4
threads, SIMD-16 threads, SIMD-16

1$ D$ 1$ D$

16 Sverre Jarp - CERN
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CPU servers: 7 dimensions of performance cerh

openlab

= First three dimensions:
= Pipelining Pipelining

= Superscalar
= Hardware vectors/SIMD

Superscalar

= Next dimension is a “pseudo” |
dimenSion: Vector width

= Hardware multithreading

Multithreading

Nodes
= Last three dimensions:
= Multiple cores ——
= Multiple sockets
= Multiple compute nodes
Multicore

SIMD = Single Instruction Multiple Data Sverre Jarp - CERN
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Seven multiplicative dimensions:

= First three dimensions:
= Pipelining

= Superscalar

= Hardware vectors/SIMD

= Next dimension is a “pseudo

dimension:
= Hardware multithreading

= [Lastthree dimensions:

= Mu
= Mu
= Mu

18

tl
ti
ti

D
D

D

e cores
e sockets
e compute nodes

Sverre Jarp - CERN
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Data parallelism

(Vectors/Matrices)

Task parallelism
(Events/Tracks)

Task/process
parallelism
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Intel Haswell superscalar architecture epn
openlab
PortO | Port1l | Port 2 | Port 3 P0|Irt 4 Pogt 5| Port6 | Port7
I | |
Integer Integer Load Load Store Integer Integer Store
Alu Alu Data Data Data Alu Alu Address
| | 1 | | 1
Integer Integer Store Store Integer Integer
Shift LEA Address Address LEA Shift
vec int | [ vector Vec Int -
ALU Logical ALU
1 | 1
‘ot | | PsaD Shuattle
| I 1
Vector String Vector
Logical Compare Logical
| 1
Vec FMA
vee rua| | e
87 FP 87 FP , . . .
muttiply | | Add = |ntel’s Haswell micro-architecture will
. execute four instructions in parallel
SQRT (across eight ports) in each cycle.
Integer
MUL

19
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Memory Hierarchy

20

From CPU to
main memory
on a Nehalem

processor
= With

multicore,
memory
bandwidth is
shared
between
cores in the
same
processor
(socket)

c =cycle

Processor Core
(Registers)

1

l

Computer Architecture and Performance Tuning \ »

64 B/1c (R+W), 4 c latency

L1l

(32 KB)

L1D

(32 KB)

1

L2
(256 KB)

64 B/2c (R+W), 10 c latency

64 B/2c for all cores
> 35 ¢ latency

Shared L3
(8192 KB)

Local memory
(large)

Sverre Jarp - CERN

~24 B/c for all cores
> 200 c latency
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GPUs: 7 dimensions of performance

= First four dimensions:
= Pipelining
= Superscalar (dual issue)
= Threads (32)
= Instruction Scheduler (4)

= Then, there are:
= Warps

= Last dimensions:
= Multiple SMs

= Multiple accelerators

“".

%
CERN

openlab

Pipelining

Threads

Superscalar

Warps

Instruction Schedulers

Cards

SM

21 Sverre Jarp - CERN
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Streaming Multiprocessor Architecture

Source: NVIDIA white paper
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Amdahl’s law CERN

= Maximum speedup defined by Amdahl’s law

S max (n) — > n = #threads, p = parallel fraction
1-p++
Gene
Amdahl
(born: = Three possibilities
1922)

= Speedup less than thread-count: sub-linear
= Speedup equal to thread-count: linear
= Speed-up greater than thread-count: super-linear

23 Sverre Jarp - CERN
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Scaled Speedup (Gustafson-Barsis’s law) CERN

openlab

= Amdahl’'s law does not take into account
= Qverhead costs

= Natural desire to increase the problem size
when computing with more cores

John L. Gustafson
CalTech in 1977
(Moved from Intel to

= Increasing the core count enables AMD in 2012)

= An increase of the problem size 2> A
decrease of the sequential fraction of
computation - Increased speed-up

Edwin Barsis:
Director at Sandia
Labs (at the time)

24 Sverre Jarp - CERN




Recommendations

(based on observations in openlab)
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A proposal for “agile” software: CERN

26

1)

2)
3)
4)
5)
6)
7)
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openlab

Seek out parallelism at all levels
a. Events, tracks, vertices, etc.

b. Perform “chunk” processing (removing event separation)

Build forward scalability

Create compute-intensive kernels

Optimise data layout for locality of reference
Performance-oriented Code

Combine broad programming talents

Use best-of-breed tools

Sverre Jarp - CERN
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Concurrency in High Energy Physics  cern

= We are “blessed” with lots of It:
= Entire events

= Particles, hits, tracks and vertices

= Physics processes

= |/O streams (ROOT trees, branches)
= Buffer handling (also data compaction, etc.)

= Fitting variables
= Partial sums, partial histograms
= and many others .....

= Usable for both data and task parallelism!

= But, fine-grained parallelism is not well exposed In
today’s C++ frameworks

Sverre Jarp - CERN
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The holy grail: Forward scalability CERN

28

openlab

Not only should a program be written in such a way that it
extracts maximum performance from today’s hardware

On future processors, performance should scale
automatically

= In the worst case, one would have to recompile or relink

Additional CPU/GPU hardware, be it cores/threads or
vectors, would automatically be put to good use

Scaling would be as expected.:

= |f the number of cores (or the vector size) doubled:
= Scaling would be close to 2x, but certainly not just a few percent

We cannot afford to “rewrite” our software for every
hardware change!

Sverre Jarp - CERN
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Kernel-oriented Programming CERN

openlab

= Take the whole program and its execution behaviour
Into account

= Get yourself a global overview as soon as possible
= Via early prototyping with realistic algorithms/data

= Influence early the design and definitely the implementation

= Foster clear split:

H
= Prepare to compute cavy compute

= Do the heavy computation
= |n kernels, where you go after all the available parallelism

= Often, a single kernel is not sufficient
= A sequence of kernels may be needed

29 Sverre Jarp - CERN
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CPU / GPU co-existence CERN

openlab

= What | would like to see happen to a (possibly dusty,
sequential) x86 application:

= A strong porting effort to move it to the GPU

= A good “kernel-oriented design” that aims for a triple-digit
speed-up

= Then, a solid port back to the CPU servers
= Exploiting vectors and cores

= Qutcome:

= Applications that can profit from new breakthroughs on
either side of the fence

30 Sverre Jarp - CERN
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CPU / GPU comparison (A case study) cer

openlab

= A study presented by Robert J. Harrison, ORNL
= 3 years old (but approach still highly interesting)

= Metropolis Monte Carlo (Chemistry benchmark)

= Hardware:

= NVIDIA Tesla C1060 @ 1.3 GHz
= 240 cores, 1/8 DP MADD/cycle

= Intel Core |7 920 @ 2.67 GHz
= Quad core, single socket, 4 DP FLOPS/cycle _

— 1.8 : 1 ratio

= Performance of CUDA kernel (initial port)
= 520x faster than Intel (CPU & compiler)

Accelerating past the petascale. A case study of GPGPUs in chemistry (R.J.Harrison, UT/ORNL, 2010)

31 Sverre Jarp - CERN
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CPU / GPU comparison (Case study — cont'd)  cgrN

openlab

= Second step:

= Go back and understand all performance dimensions of
the CPU

= |n particular, get vectorisation to work

= Bottom line:
= Improvement: 30x; new NVIDIA : Intel ratio (17.6x)

* ‘The optimal x86 and CUDA kernels become *“identical

= R.J. Harrison’s conclusion:

= “Any credible architecture benchmark must back port the
CUDA kernel to x86 and vectorise it”

= |n the name of “architectural freedom”

32 Sverre Jarp - CERN
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558
Data layout: SOA versus AoS CERN
= |In general, both GPUs and
CPUs prefer the former!
= Structure of Arrays (S0A): (T e X [ Xq [ Xy [ X5 | Xg

= Array of Structures (A0S):
Sp1 Sp2 Sp3 Sp4

We need Data-Oriented Designs!

P5
z

7 Y)

33 Sverre Jarp - CERN




Performance-oriented code

= C++ for performance
= Use light-weight C++ constructs
= Minimize virtual functions

! nenever importan

= Optimize the use of math function
- SORT, DIV

- LOG, EXP, POW

- SIN, COS, ATANZ2

Computer Architecture and Performance Tuning

‘.".

%
CERN

openlab

Use vector
libraries
whenever
possible

especially of kernels

Learn to inspect the compiler-generated assembly,

34 Sverre Jarp - CERN
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Performance tools

= Surround yourself with good tools:
= Compilers (not just one!)

Libraries
Profilers
Debuggers

Thread
checkers

Thread
profilers

35

fﬁ_: Locate Memory Problems

Analysis Type || B Collection Log

Problem

& Target
Problems

Da & Sources Modules Object

Mismatched allocation/deallocat... find_and_fix_rmemory_errors.cpp find_and_fix_memory_errors.exe

Invalid memory access find_and_fix_mermnory_errors.cpp  find_and_fix_memory_errors.exe
MSVCRL00D.dII; find_and_fix_me...

find_and_fix_memory_errors exe

Memory leak apl.cpp; asctime.c; util.cpp; vide...

Mermory leak find_and_fix_rmemory_errors.cpp 784

[ ]
410 1of2 b [Al]

Maocdule

find_and_fix_mermory_errors.exe

Offszet
112

Description Source Function Object Size

Allocation site  find_and_fix_memory_errors.cpp:l63  operator()

o ."
CERN

openlab

Intel Inspector XE 2013

Size State
Fe Mew

F= Confirmed
Deferred

14l
1a2
143
164
143

unsigned int serial=l;
unzigned int mbhoxsize = sizeof (unsigned int)* (max ob]
unszigned int * local mbox = (unsigned int *)

find and fix meEmMOry errors.
find and fix memory errors.

for (unsigned int i=0;i<=(mboxsize/(sizeof(unsigned i

malloc{m||tbhb debug.dll!local wait for all - custom sc
thb debug.dll!local spawn root
thb debug.dll!spewn root and wait - schedule

gnd wait - 3c

Write find_and_fix_mermory_errors.cppil66 operator()  find_and_fix_memory_errors.exe 112

[
A
Y

find and fix memory errors.
for (unsigned int i=0;i<=(mboxsize/(sizeof(unsigned i ||find and fix memory errors.

local mbox[i]=0; //Memory Error: C declared array

=

L)

thb_debug.dll'local_sp

[
L= = =
[= ]

=

o

for (int v = r.begin(); v !'= r.end(); ++v) |

thb_debug.dll'local_wait_for_all - custom_sc

exe!operator() -

exe!execute - par

and wait - 3c
- achedule

Image: software.intel.com

Sverre Jarp - CERN
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Broad Programming Talent CERN

= |In order to cover as many layers as possible

Problem
Solution _ Algorithms, abstraction
specialists

Language/Source program

- Compiled code, libraries
System architecture

_ Technology
Instruction set specialists
u-architecture B
Circuits
Electrons

36 Sverre Jarp - CERN
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HEP examples

Sverre Jarp - CERN
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Examples of parallelism: 2
CBM/ALICE track fitting

- I.Kisel/GSI: “Fast SIMDized Kal filter b d track fit”
" EXtraCte_d from the ngh htt:os:?lwww-linSi.gsi.delli?kise?/??ir(]:Flce_rﬂgigOOg?;dfI
Level Trigger (HLT) Code

= Originally ported to IBM’s
Cell processor

= Tracing particles in a
magnetic field

= Embarrassingly parallel
code

= Re-optimization on x86-64
systems

= Using vectors instead of
scalars

“Compressed Baryonic Matter”
Sverre Jarp - CERN
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CBM/ALICE track fitting CERN

openlab

= Detalls of the re-optimization on x86-64:

= Part 1: use SSE vectors instead of scalars

= Operator overloading allows seamless change of data types
= |ntrinsics (from Intel/GNU header file): Map directly to
Instructions:

- ___mm_add_ps corresponds directly to ADDPS, the instruction
that operates on four packed, single-precision FP numbers

. 128 bits in total
= Classes

- P4_F32vec4 — packed single class with overloaded operators

. F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return _mm_add_ps(a,b); }

* Reqlt: 4x spead increase from x87 scalar to packed SSE
(singde_precisien)

39 Sverre Jarp - CERN
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Examples of parallelism: 2
CBM track fitting e

= Re-optimization on x86-64 systems
= Step 1: Data parallelism using SIMD instructions

= Step 2: use TBB (or OpenMP) to scale across cores

A 2xCell SPE (1

6)

. Woodcrest ( 2
Data Stream Parallelism Task Level Parallelism zCIovertown(( 4§
6)

O Dunnington (

10.00

—_
=)
=}

Time/Track, s
>

.

0.10

SIMD Cores and Threads

001 lar d Ib| i I|
scalar ouble single -> 5 4 8

16 32
Threads
Scalability on different CPU architectures — speed-up 100

40 From H.Bjerke/CERN openlab, I.Kisel/GSI
Sverre Jarp - CERN
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Example: ROOT minimization and fitting  cErN

! opeﬁlab

= Log-likelihood parallelization (splitting the sum) is quite efficient

= Minuit parallelization is independent of user code

= Example on a 32-core server:

35.0

30.0

=#—=Results

Recent paper:
Comparison of

7 08 Software Technologies
for Vectorization and
Parallelization

(CERN openlab, 2012)

—Ideal
Amdahl

25.0

g 20.0
o 7.8

a
@ 15.0

10.0

5.0 -
#¥ 3.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

# Processes

= |n principle, we can have combinations of:
= vectorization (using SSE or AVX)
= parallelization via multi-threading in a multi-core CPU

= multiple process in a distributed computing environment
41 Sverre Jarp - CERN
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Examples of parallelism: GEANT4 Bt

= Initially; ParGeant4 (Gene Cooperman/NEU)

= Implemented event-level parallelism to simulate separate
events across remote nodes.

= New prototype re-implements thread-safe event-level

parallelism inside a multi-core node
= Done by NEU PhD student Xin Dong:

- Using FUllCMS and TestEM examples
= Required change of lots of existing classes (10% of 1 MLOC):

- Especially global, “extrn”, and static declarations — ] .
- Preprocessor used for automating the work.

= Major reimplementation:
- Now in separate branch in the G4 source tree

= Additional memory: Only 25 MB/thread (!)

42 Sverre Jarp - CERN
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Multithreaded GEANT4 benchmark  cern
= Excellent “weak” scaling on 32 (real) cores *

= With a 4-socket server

Multi-threaded Geant 4 prototype {generation 3) scalability on Nehalem-EX
ParFullCMSmt: average simulation time for 100 events per thread

1600

1400 -

1200 -

1000 +

g00 4

Efficiency

B0 -mmmmmm e e 60%

A00 Fommmmmm e 40%

Average simulation time [5]

200 F---mmmmmmmmm e 20%
—— Simulation time Efficiency i

I:I I I I I I I I I I:Il:l.l'l:.:l
0 g 16 24 32 40 48 la b

# logical cores

From A.Nowak/CERN openlab

43
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Geant4 in medicine (Another case study)

SOA:

CUDA-based Geant4 Monte Carlo
Simulation for Radiation Therapy

N. Henderson & K. Murakami

GTC 2013

Common pattern in
CUDA to allow for
coalesced memory
access

Experiments with
transport showed this
to be 3-4x faster than
AOS

Benchmark on Tesla C2070:

= ‘ s B
St
CERN

openlab

100 million primary particles

Time: 72 minutes

~ 23.1 primary particles per ms
~ 50-60x speedup over Geant4 on 1 CPU

44

Physics processes 50
Energy dose reduction 30
Interaction length 18

Run management 2

Sverre Jarp - CERN
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Concluding remarks CERN

openlab

= Massively parallel hardware is here to stay!

= Qur current software frameworks were not
developed for such parallelism

= Nevertheless, in physics, we have the
parallelism needed

= Porting to GPUs iIs beneficial for code
redesign

= If you ensure that the CPU version also
profits, you can have the best of both
worlds!

45 Sverre Jarp - CERN
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Thank you!
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