\»
‘.".

GPUs in High Energy Physics workshop ‘e
15 - 16 April 2013 CERN

openlab

Moving to Good Software Designs

(given the complexity of modern
computing devices)

“The 7 dimensions of performance”

Sverre Jarp
CERN
openlab
CTO

IT Dept., CERN




Computer Architecture and Performance Tuning \ »

What is the CERN openlab? CERN

A science-industry partnership to drive R&D
and innovation with over a decade of success

Evaluate state-of-the-art technologies in a
challenging environment and improve them

Test in a research environment today what intel.
will be used in many business sectors

tomorrow ORACLE
Train next generation engineers/employees SIEMENS

Disseminate results and outreach to new

audiences BEER L
Yandex

Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
~‘ ‘ g

Contents CERN

openlab

= Why worry about performance?
= Complexity in Computing

» Guidelines for SW design

* Some HEP examples

= Conclusions

Sverre Jarp - CERN



Computer Architecture and Performance Tuning \ »

Why worry about performance? CERN

= My arguments:

= The “easy ride” disappeared: The frequency scaling we
enjoyed in the past does not exist any longer.
It stopped a decade ago!

= ..and, as a “by-product”, the CPU/GPU architectures are
becoming (much) more complicated

= Performance per watt: There are important thermal issues
associated with large scale computing

= Even when 1W processors exist!

= Performance per €: There are important cost issues
associated with large scale computing

= Even when using “commodity equipment”

Sverre Jarp - CERN




Moore’s law

= \We continue to double the number of
transistors every other year

= The consequences:
= CPUs
= Single core - Multicore > Manycore
= Hardware vector support
= Hardware threading

= GPUs
= Huge number of floating-point units

= Today, we commonly acquire chips with
1’000’000’000 transistors!

= Intel/AMD server chips and high-end GPU
devices are much more

= Kepler GK110: 7.1 billion transistors

Computer Architecture and Performance Tuning \ »

1,000,

BOO0CD —

Sverre Jarp - CERN m——




Computer Architecture and Performance Tuning

“Intel platform 2015” (and beyond)

Today’s silicon processes:
= 32,28, 22 nm

\»
.~‘ '.

."
CERN

openlab

We are here

Being introduced.: I
= 14 nm (2013/14)

Increasing HW
Threads
Per Socket

In research:
= 10 nm (2015/16)

= 7nm (2017/18)

100+

10 —

I

HT

Multi-core Era
Scalar and

parallel applications

Many-core Era
Massively parallel
applications

LHC ddta

i
2003

T
2005

T
2007

i 1
2009 2011

2013

= 5nm (2019/20)

- Source: Intel

Each generation will push the core count:
= We are inside the many-core era (whether we like it or not) !

Sverre Jarp - CERN

S. Borkar et al. (Intel), **Platform 2015: Intel Platform Evolution for the Next Decade", 2005.




Computer Architecture and Performance Tuning A »

Complexity iIn Computing

Sverre Jarp - CERN



Computer Architecture and Performance Tuning \ »
~‘ ‘ g

."

Archaic Computing Units -
= As “stupid” as 50 years ago

= Still based on the Von Neumann
architecture

= Primitive “machine language”

= Ferranti Mercury:

= Floating-point calculations
— Add: 3 cycles; Multiply: 5 cycles

- Todéyi
= Programming for performance

IS the same headache as in the
past

Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
‘. ‘ g

b

And the language is ancient, too! CERN
= Assembly/machine code!

..B1.31: # Preds ..B1.31 ..B1.30 # Infreq
movsd (%rsp), %xmm3 #94 .17
lea (%rbx,%rbx,2), %rcx #94 .36
movsd (%rsi,%rcx,8), %xmm2 #94 .40
incl %eax #93.42
movsd 8(%rsi ,%rcx,8), %xmmO #94 .40
cmpl %edx, %eax #93.39
mullsd Y%oxmm2, %xmm2 #94 .40
mullsd %xmmO, %xmmO #94 .40
movsd 16(%rsi,%rcx,8), %xmml #94 .40
addsd %xmmO, %xmm2 #94 .40
mullsd Y%xmml, %xmml #94 .40
movl %eax, %ebx #93.42
addsd Joxmml, %xmm2 #94 .40
sqrtsd %xmm2, %xmm2 #94 .40
addsd Y%oxmm2, %xmm3 #94 .17
movsd %xmm3, (%rsp) #94 .17
jb ..B1.31 # Prob 82% #93.39

9 Sverre Jarp - CERN




And, even assembly is “too high level” cern

10

Computer Architecture and Performance Tuning \ »
“ ‘ g

b

openlab

= Intel translates x86 assembly instructions
= Into micro-operations

= NVIDIA translates PTX (virtual assembly)
= Into machine instructions

= S0, what does it mean (?) when the hardware tells
you:

= “XXN instructions executed”

Sverre Jarp - CERN



Performance: A complicated story! CERN

11

Computer Architecture and Performance Tuning \ »
‘. ‘ g

b

openlab

We start with a concrete, real-life problem to solve

= For instance, simulate the passage of elementary particles
through matter

We write programs in high level languages
= C, C++, CUDA, JAVA, Python, etc.

A compiler (or an interpreter) transforms the high-level code to
machine-level code

We link in external libraries

A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

In most cases, we have little clue as to the efficiency of this

transformation process
Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
.~ ‘ & [ |

A Complicated Story (in 9 layers!) CERN

12

openlab

Problem
Design, Algorithms, Data
Language/Source progra

Compilers; Libraries
System architecture
Instruction set architectur
u-architecture
Circuits
Electrons

= We must avoid being fenced into a single layer!

Adapted from Y.Patt, U-Austin

Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
‘. ‘ g

b

In the days of the Pentium CERN

openlab

= Life was really simple:

Pipelining

= Basically two dimensions
= The frequency of the pipeline Superscalar

= The number of boxes

= The semiconductor industry
Increased the frequency

Nodes

= We acquired the right number of
(single-socket) boxes

Sockets

13 Sverre Jarp - CERN



Computer Architecture and Performance Tuning

QU s B
. e
Frequency scaling 2 2Ll
= The 7 “fat” years of frequency scaling in HEP
= The Pentium Pro in 1996: 150 MHz
= The Pentium 4 in 2003: 3.8 GHz (~25x)
= But, this was 10 years ago!
m S|nce then 00000 Intel Processor Clock Speed (MHz)
= Core 2 systems: —>
" s Gz il
= Multi-core //
= Recent CERN purchase: | /
= [ntel Xeon E5-2630L T
- uonlyn 200 GHZ N From A. Nowak/openlab

14 Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »

Accelerators (1): Nvidia Kepler GPU  cern

= Made available in 4Q2012

= GK110 GPU

= 3x DP performance:

= >1 Teraflops
GK110 GPU

= |[nnovative design:

= SMX (streaming
multiprocessors)

* Dynamic parallelism for Considerable interest
spawning new threads in the HEP community

= Hyper-Q enables multiple
CPU cores to utilise CUDA
cores

15 Adapted from Nvidia
Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
.~ ‘ g

b

Accelerators (2): Intel Xeon Phi CERN

openlab

* Intel Many Integrated Cores (MIC):
= Announced at ISC10, available 2 ¥ years later

= Based on the x86 architecture, 22nm, ~1.0 GHz

= Many-core (up to 62 cores) + 4-way multithreaded +
512-bit vector unit

= Limited memory: 8 Gigabytes

In Order, 4 In Order, 4
threads, SIMD-16 threads, SIMD-16

I$ D$ 1S D$

Memory Controller
Memory Controller

In Order, 4 In Order, 4
threads, SIMD-16 threads, SIMD-16

1$ D$ 1$ D$

16 Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
‘. ‘ g

CPU servers: 7 dimensions of performance cerh

openlab

= First three dimensions:
= Pipelining Pipelining

= Superscalar
= Hardware vectors/SIMD

Superscalar

= Next dimension is a “pseudo” |
dimenSion: Vector width

= Hardware multithreading

Multithreading

Nodes
= Last three dimensions:
= Multiple cores ——
= Multiple sockets
= Multiple compute nodes
Multicore

SIMD = Single Instruction Multiple Data Sverre Jarp - CERN




Computer Architecture and Performance Tuning

Seven multiplicative dimensions:

= First three dimensions:
= Pipelining

= Superscalar

= Hardware vectors/SIMD

= Next dimension is a “pseudo

dimension:
= Hardware multithreading

= [Lastthree dimensions:

= Mu
= Mu
= Mu

18

tl
ti
ti

D
D

D

e cores
e sockets
e compute nodes

Sverre Jarp - CERN

= ‘ s B
St
CERN

openlab

Data parallelism

(Vectors/Matrices)

Task parallelism
(Events/Tracks)

Task/process
parallelism




Computer Architecture and Performance Tuning

\»

. W em
Intel Haswell superscalar architecture epn
openlab
PortO | Port1l | Port 2 | Port 3 P0|Irt 4 Pogt 5| Port6 | Port7
I | |
Integer Integer Load Load Store Integer Integer Store
Alu Alu Data Data Data Alu Alu Address
| | 1 | | 1
Integer Integer Store Store Integer Integer
Shift LEA Address Address LEA Shift
vec int | [ vector Vec Int -
ALU Logical ALU
1 | 1
‘ot | | PsaD Shuattle
| I 1
Vector String Vector
Logical Compare Logical
| 1
Vec FMA
vee rua| | e
87 FP 87 FP , . . .
muttiply | | Add = |ntel’s Haswell micro-architecture will
. execute four instructions in parallel
SQRT (across eight ports) in each cycle.
Integer
MUL

19

Sverre Jarp - CERN

Source: IDF 2012




Memory Hierarchy

20

From CPU to
main memory
on a Nehalem

processor
= With

multicore,
memory
bandwidth is
shared
between
cores in the
same
processor
(socket)

c =cycle

Processor Core
(Registers)

1

l

Computer Architecture and Performance Tuning \ »

64 B/1c (R+W), 4 c latency

L1l

(32 KB)

L1D

(32 KB)

1

L2
(256 KB)

64 B/2c (R+W), 10 c latency

64 B/2c for all cores
> 35 ¢ latency

Shared L3
(8192 KB)

Local memory
(large)

Sverre Jarp - CERN

~24 B/c for all cores
> 200 c latency




Computer Architecture and Performance Tuning

GPUs: 7 dimensions of performance

= First four dimensions:
= Pipelining
= Superscalar (dual issue)
= Threads (32)
= Instruction Scheduler (4)

= Then, there are:
= Warps

= Last dimensions:
= Multiple SMs

= Multiple accelerators

“".

%
CERN

openlab

Pipelining

Threads

Superscalar

Warps

Instruction Schedulers

Cards

SM

21 Sverre Jarp - CERN



Warp T b e WD T
Caspa™eh ek palohs Leaith Jbpalch Dispaich Dizgai=h Jdispaick Dz h
B & + & & i & il

Ragistor Fllo 65,536 x 32-hit)
] ] T & & ] B
L

e 5 Ciore - T Cidw
. EFY Core - Com Cow C

ru
o -

EF

ru

ru

Gy Do - L IFY Low ©
i

B8 KB Shared Memoay | L1 Gache

LM 197 singls-sescison CUDA corm, B double-prechion ondl, 12 special funcfion onis [SFUL and 52 oedsiom unigs
fubfiTl

- Sverre Jarp - CERN

Computer Architecture and Performance Tuning

Streaming Multiprocessor Architecture

Source: NVIDIA white paper




Computer Architecture and Performance Tuning \ »

Amdahl’s law CERN

= Maximum speedup defined by Amdahl’s law

S max (n) — > n = #threads, p = parallel fraction
1-p++
Gene
Amdahl
(born: = Three possibilities
1922)

= Speedup less than thread-count: sub-linear
= Speedup equal to thread-count: linear
= Speed-up greater than thread-count: super-linear

23 Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
‘. ‘ g

b

Scaled Speedup (Gustafson-Barsis’s law) CERN

openlab

= Amdahl’'s law does not take into account
= Qverhead costs

= Natural desire to increase the problem size
when computing with more cores

John L. Gustafson
CalTech in 1977
(Moved from Intel to

= Increasing the core count enables AMD in 2012)

= An increase of the problem size 2> A
decrease of the sequential fraction of
computation - Increased speed-up

Edwin Barsis:
Director at Sandia
Labs (at the time)

24 Sverre Jarp - CERN




Recommendations

(based on observations in openlab)

2 syerreJar p - CERN 4



A proposal for “agile” software: CERN

26

1)

2)
3)
4)
5)
6)
7)

Computer Architecture and Performance Tuning \ »
‘. ‘ g

* -

openlab

Seek out parallelism at all levels
a. Events, tracks, vertices, etc.

b. Perform “chunk” processing (removing event separation)

Build forward scalability

Create compute-intensive kernels

Optimise data layout for locality of reference
Performance-oriented Code

Combine broad programming talents

Use best-of-breed tools

Sverre Jarp - CERN



Computer Architecture and Performance Tuning \ »

Concurrency in High Energy Physics  cern

= We are “blessed” with lots of It:
= Entire events

= Particles, hits, tracks and vertices

= Physics processes

= |/O streams (ROOT trees, branches)
= Buffer handling (also data compaction, etc.)

= Fitting variables
= Partial sums, partial histograms
= and many others .....

= Usable for both data and task parallelism!

= But, fine-grained parallelism is not well exposed In
today’s C++ frameworks

Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
~‘ ‘ g

The holy grail: Forward scalability CERN

28

openlab

Not only should a program be written in such a way that it
extracts maximum performance from today’s hardware

On future processors, performance should scale
automatically

= In the worst case, one would have to recompile or relink

Additional CPU/GPU hardware, be it cores/threads or
vectors, would automatically be put to good use

Scaling would be as expected.:

= |f the number of cores (or the vector size) doubled:
= Scaling would be close to 2x, but certainly not just a few percent

We cannot afford to “rewrite” our software for every
hardware change!

Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
“ ‘ g

* -

Kernel-oriented Programming CERN

openlab

= Take the whole program and its execution behaviour
Into account

= Get yourself a global overview as soon as possible
= Via early prototyping with realistic algorithms/data

= Influence early the design and definitely the implementation

= Foster clear split:

H
= Prepare to compute cavy compute

= Do the heavy computation
= |n kernels, where you go after all the available parallelism

= Often, a single kernel is not sufficient
= A sequence of kernels may be needed

29 Sverre Jarp - CERN



Computer Architecture and Performance Tuning \ »
~‘ ‘ g

CPU / GPU co-existence CERN

openlab

= What | would like to see happen to a (possibly dusty,
sequential) x86 application:

= A strong porting effort to move it to the GPU

= A good “kernel-oriented design” that aims for a triple-digit
speed-up

= Then, a solid port back to the CPU servers
= Exploiting vectors and cores

= Qutcome:

= Applications that can profit from new breakthroughs on
either side of the fence

30 Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
~‘ ‘ g

CPU / GPU comparison (A case study) cer

openlab

= A study presented by Robert J. Harrison, ORNL
= 3 years old (but approach still highly interesting)

= Metropolis Monte Carlo (Chemistry benchmark)

= Hardware:

= NVIDIA Tesla C1060 @ 1.3 GHz
= 240 cores, 1/8 DP MADD/cycle

= Intel Core |7 920 @ 2.67 GHz
= Quad core, single socket, 4 DP FLOPS/cycle _

— 1.8 : 1 ratio

= Performance of CUDA kernel (initial port)
= 520x faster than Intel (CPU & compiler)

Accelerating past the petascale. A case study of GPGPUs in chemistry (R.J.Harrison, UT/ORNL, 2010)

31 Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
~‘ ‘ g

CPU / GPU comparison (Case study — cont'd)  cgrN

openlab

= Second step:

= Go back and understand all performance dimensions of
the CPU

= |n particular, get vectorisation to work

= Bottom line:
= Improvement: 30x; new NVIDIA : Intel ratio (17.6x)

* ‘The optimal x86 and CUDA kernels become *“identical

= R.J. Harrison’s conclusion:

= “Any credible architecture benchmark must back port the
CUDA kernel to x86 and vectorise it”

= |n the name of “architectural freedom”

32 Sverre Jarp - CERN



Computer Architecture and Performance Tuning \ »

QU'-
558
Data layout: SOA versus AoS CERN
= |In general, both GPUs and
CPUs prefer the former!
= Structure of Arrays (S0A): (T e X [ Xq [ Xy [ X5 | Xg

= Array of Structures (A0S):
Sp1 Sp2 Sp3 Sp4

We need Data-Oriented Designs!

P5
z

7 Y)

33 Sverre Jarp - CERN




Performance-oriented code

= C++ for performance
= Use light-weight C++ constructs
= Minimize virtual functions

! nenever importan

= Optimize the use of math function
- SORT, DIV

- LOG, EXP, POW

- SIN, COS, ATANZ2

Computer Architecture and Performance Tuning

‘.".

%
CERN

openlab

Use vector
libraries
whenever
possible

especially of kernels

Learn to inspect the compiler-generated assembly,

34 Sverre Jarp - CERN




Computer Architecture and Performance Tuning

Performance tools

= Surround yourself with good tools:
= Compilers (not just one!)

Libraries
Profilers
Debuggers

Thread
checkers

Thread
profilers

35

fﬁ_: Locate Memory Problems

Analysis Type || B Collection Log

Problem

& Target
Problems

Da & Sources Modules Object

Mismatched allocation/deallocat... find_and_fix_rmemory_errors.cpp find_and_fix_memory_errors.exe

Invalid memory access find_and_fix_mermnory_errors.cpp  find_and_fix_memory_errors.exe
MSVCRL00D.dII; find_and_fix_me...

find_and_fix_memory_errors exe

Memory leak apl.cpp; asctime.c; util.cpp; vide...

Mermory leak find_and_fix_rmemory_errors.cpp 784

[ ]
410 1of2 b [Al]

Maocdule

find_and_fix_mermory_errors.exe

Offszet
112

Description Source Function Object Size

Allocation site  find_and_fix_memory_errors.cpp:l63  operator()

o ."
CERN

openlab

Intel Inspector XE 2013

Size State
Fe Mew

F= Confirmed
Deferred

14l
1a2
143
164
143

unsigned int serial=l;
unzigned int mbhoxsize = sizeof (unsigned int)* (max ob]
unszigned int * local mbox = (unsigned int *)

find and fix meEmMOry errors.
find and fix memory errors.

for (unsigned int i=0;i<=(mboxsize/(sizeof(unsigned i

malloc{m||tbhb debug.dll!local wait for all - custom sc
thb debug.dll!local spawn root
thb debug.dll!spewn root and wait - schedule

gnd wait - 3c

Write find_and_fix_mermory_errors.cppil66 operator()  find_and_fix_memory_errors.exe 112

[
A
Y

find and fix memory errors.
for (unsigned int i=0;i<=(mboxsize/(sizeof(unsigned i ||find and fix memory errors.

local mbox[i]=0; //Memory Error: C declared array

=

L)

thb_debug.dll'local_sp

[
L= = =
[= ]

=

o

for (int v = r.begin(); v !'= r.end(); ++v) |

thb_debug.dll'local_wait_for_all - custom_sc

exe!operator() -

exe!execute - par

and wait - 3c
- achedule

Image: software.intel.com

Sverre Jarp - CERN



Computer Architecture and Performance Tuning \ »

Broad Programming Talent CERN

= |In order to cover as many layers as possible

Problem
Solution _ Algorithms, abstraction
specialists

Language/Source program

- Compiled code, libraries
System architecture

_ Technology
Instruction set specialists
u-architecture B
Circuits
Electrons

36 Sverre Jarp - CERN



37

Computer Architecture and Performance Tuning A »

HEP examples

Sverre Jarp - CERN



Computer Architecture and Performance Tuning \ »

Examples of parallelism: 2
CBM/ALICE track fitting

- I.Kisel/GSI: “Fast SIMDized Kal filter b d track fit”
" EXtraCte_d from the ngh htt:os:?lwww-linSi.gsi.delli?kise?/??ir(]:Flce_rﬂgigOOg?;dfI
Level Trigger (HLT) Code

= Originally ported to IBM’s
Cell processor

= Tracing particles in a
magnetic field

= Embarrassingly parallel
code

= Re-optimization on x86-64
systems

= Using vectors instead of
scalars

“Compressed Baryonic Matter”
Sverre Jarp - CERN

38




Computer Architecture and Performance Tuning \ »
‘. ‘ g

b

CBM/ALICE track fitting CERN

openlab

= Detalls of the re-optimization on x86-64:

= Part 1: use SSE vectors instead of scalars

= Operator overloading allows seamless change of data types
= |ntrinsics (from Intel/GNU header file): Map directly to
Instructions:

- ___mm_add_ps corresponds directly to ADDPS, the instruction
that operates on four packed, single-precision FP numbers

. 128 bits in total
= Classes

- P4_F32vec4 — packed single class with overloaded operators

. F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return _mm_add_ps(a,b); }

* Reqlt: 4x spead increase from x87 scalar to packed SSE
(singde_precisien)

39 Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »

Examples of parallelism: 2
CBM track fitting e

= Re-optimization on x86-64 systems
= Step 1: Data parallelism using SIMD instructions

= Step 2: use TBB (or OpenMP) to scale across cores

A 2xCell SPE (1

6)

. Woodcrest ( 2
Data Stream Parallelism Task Level Parallelism zCIovertown(( 4§
6)

O Dunnington (

10.00

—_
=)
=}

Time/Track, s
>

.

0.10

SIMD Cores and Threads

001 lar d Ib| i I|
scalar ouble single -> 5 4 8

16 32
Threads
Scalability on different CPU architectures — speed-up 100

40 From H.Bjerke/CERN openlab, I.Kisel/GSI
Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
“ ‘ g

Example: ROOT minimization and fitting  cErN

! opeﬁlab

= Log-likelihood parallelization (splitting the sum) is quite efficient

= Minuit parallelization is independent of user code

= Example on a 32-core server:

35.0

30.0

=#—=Results

Recent paper:
Comparison of

7 08 Software Technologies
for Vectorization and
Parallelization

(CERN openlab, 2012)

—Ideal
Amdahl

25.0

g 20.0
o 7.8

a
@ 15.0

10.0

5.0 -
#¥ 3.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

# Processes

= |n principle, we can have combinations of:
= vectorization (using SSE or AVX)
= parallelization via multi-threading in a multi-core CPU

= multiple process in a distributed computing environment
41 Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »
‘. ‘ g

Examples of parallelism: GEANT4 Bt

= Initially; ParGeant4 (Gene Cooperman/NEU)

= Implemented event-level parallelism to simulate separate
events across remote nodes.

= New prototype re-implements thread-safe event-level

parallelism inside a multi-core node
= Done by NEU PhD student Xin Dong:

- Using FUllCMS and TestEM examples
= Required change of lots of existing classes (10% of 1 MLOC):

- Especially global, “extrn”, and static declarations — ] .
- Preprocessor used for automating the work.

= Major reimplementation:
- Now in separate branch in the G4 source tree

= Additional memory: Only 25 MB/thread (!)

42 Sverre Jarp - CERN




Computer Architecture and Performance Tuning \ »

Multithreaded GEANT4 benchmark  cern
= Excellent “weak” scaling on 32 (real) cores *

= With a 4-socket server

Multi-threaded Geant 4 prototype {generation 3) scalability on Nehalem-EX
ParFullCMSmt: average simulation time for 100 events per thread

1600

1400 -

1200 -

1000 +

g00 4

Efficiency

B0 -mmmmmm e e 60%

A00 Fommmmmm e 40%

Average simulation time [5]

200 F---mmmmmmmmm e 20%
—— Simulation time Efficiency i

I:I I I I I I I I I I:Il:l.l'l:.:l
0 g 16 24 32 40 48 la b

# logical cores

From A.Nowak/CERN openlab

43

QVveEllEe Jdip - CERIN



Computer Architecture and Performance Tuning

Geant4 in medicine (Another case study)

SOA:

CUDA-based Geant4 Monte Carlo
Simulation for Radiation Therapy

N. Henderson & K. Murakami

GTC 2013

Common pattern in
CUDA to allow for
coalesced memory
access

Experiments with
transport showed this
to be 3-4x faster than
AOS

Benchmark on Tesla C2070:

= ‘ s B
St
CERN

openlab

100 million primary particles

Time: 72 minutes

~ 23.1 primary particles per ms
~ 50-60x speedup over Geant4 on 1 CPU

44

Physics processes 50
Energy dose reduction 30
Interaction length 18

Run management 2

Sverre Jarp - CERN



Computer Architecture and Performance Tuning \ »
~‘ ‘ g

Concluding remarks CERN

openlab

= Massively parallel hardware is here to stay!

= Qur current software frameworks were not
developed for such parallelism

= Nevertheless, in physics, we have the
parallelism needed

= Porting to GPUs iIs beneficial for code
redesign

= If you ensure that the CPU version also
profits, you can have the best of both
worlds!

45 Sverre Jarp - CERN



46

Computer Architecture and Performance Tuning

Thank you!

Sverre Jarp - CERN

AP
x "’
CERN

openlab



	Slide Number 1
	What is the CERN openlab?
	Contents
	Why worry about performance?
	Moore’s law
	“Intel platform 2015” (and beyond)
	Complexity in Computing
	Archaic Computing Units
	And the language is ancient, too! 
	And, even assembly is “too high level”
	Performance: A complicated story!
	A Complicated Story (in 9 layers!)
	In the days of the Pentium
	Frequency scaling
	Accelerators (1): Nvidia Kepler GPU
	Accelerators (2): Intel Xeon Phi
	CPU servers: 7 dimensions of performance
	Seven multiplicative dimensions:
	Intel Haswell superscalar architecture
	Memory Hierarchy
	GPUs: 7 dimensions of performance
	Streaming Multiprocessor Architecture
	Amdahl’s law
	Scaled Speedup (Gustafson-Barsis’s law)
	Recommendations�(based on observations in openlab)
	A proposal for “agile” software:
	Concurrency in High Energy Physics
	The holy grail: Forward scalability
	Kernel-oriented Programming
	CPU / GPU co-existence
	CPU / GPU comparison (A case study)
	CPU / GPU comparison (Case study – cont’d)
	Data layout: SoA versus AoS
	Performance-oriented code
	Performance tools
	Broad Programming Talent
	HEP examples
	Examples of parallelism:�CBM/ALICE track fitting
	CBM/ALICE track fitting
	Examples of parallelism:�CBM track fitting
	Example: ROOT minimization and fitting
	Examples of parallelism: GEANT4
	Multithreaded GEANT4 benchmark
	Geant4 in medicine (Another case study)
	Concluding remarks
	Thank you!

