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What is the CERN openlab? 

 A science-industry partnership to drive R&D 
and innovation with over a decade of success 

 Evaluate state-of-the-art technologies in a 
challenging environment and improve them 

 Test in a research environment today what 
will be used in many business sectors 
tomorrow 

 Train next generation engineers/employees 

 Disseminate results and outreach to new 
audiences 
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Why worry about performance? 

 My arguments: 
 The “easy ride” disappeared: The frequency scaling we 

enjoyed in the past does not exist any longer. 
It stopped a decade ago! 
 ..and, as a “by-product”, the CPU/GPU architectures are 

becoming (much) more complicated 
 

 Performance per watt: There are important thermal issues 
associated with large scale computing 
 Even when 1W processors exist! 

 

 Performance per €: There are important cost issues 
associated with large scale computing 
 Even when using “commodity equipment” 
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Moore’s law 
 We continue to double the number of 

transistors every other year 

 The consequences: 
 CPUs 

 Single core  Multicore  Manycore 
 Hardware vector support 
 Hardware threading 

 GPUs 
 Huge number of floating-point units 

 Today, we commonly acquire chips with 
1’000’000’000 transistors! 
 Intel/AMD server chips and high-end GPU 

devices are much more 
 Kepler GK110: 7.1 billion transistors 

Adapted from Wikipedia From Wikipedia 
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“Intel platform 2015” (and beyond) 
 Today’s silicon processes:  

 32, 28, 22 nm 

 Being introduced: 
 14 nm (2013/14) 

 

 In research: 
 10 nm (2015/16) 
   7 nm (2017/18) 
   5 nm (2019/20) 

– Source: Intel 

 Each generation will push the core count: 
 We are inside the many-core era (whether we like it or not) ! 

 

LHC data 

We are here 

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005. 
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Complexity in Computing 
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Archaic Computing Units 
 As “stupid” as 50 years ago 

 Still based on the Von Neumann 
architecture 

 Primitive “machine language” 

 Ferranti Mercury: 
 Floating-point calculations 

–  Add: 3 cycles; Multiply: 5 cycles 

 Today:  
 Programming for performance 

is the same headache as in the 
past 
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And the language is ancient, too!  
 Assembly/machine code! 

..B1.31:                      # Preds ..B1.31 ..B1.30         # Infreq 
        movsd     (%rsp), %xmm3                                 #94.17 
        lea       (%rbx,%rbx,2), %rcx                           #94.36 
        movsd     (%rsi,%rcx,8), %xmm2                          #94.40 
        incl      %eax                                          #93.42 
        movsd     8(%rsi,%rcx,8), %xmm0                         #94.40 
        cmpl      %edx, %eax                                    #93.39 
        mulsd     %xmm2, %xmm2                                  #94.40 
        mulsd     %xmm0, %xmm0                                  #94.40 
        movsd     16(%rsi,%rcx,8), %xmm1                        #94.40 
        addsd     %xmm0, %xmm2                                  #94.40 
        mulsd     %xmm1, %xmm1                                  #94.40 
        movl      %eax, %ebx                                    #93.42 
        addsd     %xmm1, %xmm2                                  #94.40 
        sqrtsd    %xmm2, %xmm2                                  #94.40 
        addsd     %xmm2, %xmm3                                  #94.17 
        movsd     %xmm3, (%rsp)                                 #94.17 
        jb        ..B1.31       # Prob 82%                      #93.39  
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And, even assembly is “too high level” 

 Intel translates x86 assembly instructions 
 into micro-operations 

 

 NVIDIA translates PTX (virtual assembly) 
 into machine instructions  

 

 So, what does it mean (?) when the hardware tells 
you: 
 “XXN instructions executed” 
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Performance: A complicated story! 

 We start with a concrete, real-life problem to solve 
 For instance, simulate the passage of elementary particles 

through matter 

 We write programs in high level languages 
 C, C++, CUDA, JAVA, Python, etc. 

 A compiler (or an interpreter) transforms the high-level code to 
machine-level code 

 We link in external libraries 

 A sophisticated processor with a complex architecture and 
even more complex micro-architecture executes the code  

 In most cases, we have little clue as to the efficiency of this 
transformation process 
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A Complicated Story (in 9 layers!) 

Adapted from Y.Patt, U-Austin 

 We must avoid being fenced into a single layer! 

Problem 
Design, Algorithms, Data 

Language/Source program 

System architecture 
Instruction set architecture 

µ-architecture 
Circuits 

Electrons 

Compilers; Libraries 
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In the days of the Pentium 

 Life was really simple: 
 

 Basically two dimensions 
 The frequency of the pipeline 
 The number of boxes 

 
 The semiconductor industry 

increased the frequency 
 

 We acquired the right number of 
(single-socket) boxes  

Superscalar 

Pipelining 

Nodes 

Sockets 
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Frequency scaling 
 The 7 “fat” years of frequency scaling in HEP 

 

 The Pentium Pro in 1996: 150 MHz 
 The Pentium 4 in 2003: 3.8 GHz (~25x) 

 But, this was 10 years ago! 

 Since then 
 Core 2 systems: 

 ~3 GHz 
 Multi-core 

 Recent CERN purchase: 
 Intel Xeon E5-2630L 

 “only” 2.00 GHz From A. Nowak/openlab 
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Accelerators (1): Nvidia Kepler GPU 

 Made available in 4Q2012 
 

 GK110 GPU 
 3x DP performance: 

 >1 Teraflops 

 Innovative design: 
 SMX (streaming 

multiprocessors) 
 Dynamic parallelism for 

spawning new threads 
 Hyper-Q enables multiple 

CPU cores to utilise CUDA 
cores 

Adapted from Nvidia 

Considerable interest 
in the HEP community 
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Accelerators (2): Intel Xeon Phi 
 Intel Many Integrated Cores (MIC): 
 Announced at ISC10, available 2 ½ years later 
 Based on the x86 architecture, 22nm, ~1.0 GHz 
 Many-core (up to 62 cores) + 4-way multithreaded + 

512-bit vector unit 
 Limited memory: 8 Gigabytes 

 

 

   
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CPU servers: 7 dimensions of performance 

 First three dimensions: 
 Pipelining 
 Superscalar 
 Hardware vectors/SIMD 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

Vector width 

Superscalar 

Pipelining 

SIMD = Single Instruction Multiple Data 

Multithreading 

Nodes 

Multicore 

Sockets 
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Seven multiplicative dimensions: 
 First three dimensions: 
 Pipelining 
 Superscalar  
 Hardware vectors/SIMD 

 Next dimension is a “pseudo” 
dimension: 
 Hardware multithreading 

 Last three dimensions: 
 Multiple cores 
 Multiple sockets 
 Multiple compute nodes  

Data parallelism 
(Vectors/Matrices) 

Task parallelism 
(Events/Tracks) 

Task/process 
parallelism 
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Intel Haswell superscalar architecture 

 Intel’s Haswell micro-architecture will 
execute four instructions in parallel 
(across eight ports) in each cycle. 

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

Integer 
Alu 

Vec Int 
ALU 

x87 FP 
Multiply 

Vec FMA 
Vec FMul 

Vector 
Logical 

Vector 
Shift 

Integer 
Alu 

Integer 
Alu 

Vec Int 
ALU 

Vector 
Logical 

Vector 
Shuffle 

Load 
Data 

Store 
Data 

Branch 
Unit 

DIV 
SQRT 

x87 FP 
Add 

Vec FMA 
Vec FMul 
Vec FAdd 

Integer 
Shift 

Integer 
MUL 

Integer 
LEA 

PSAD 

String 
Compare 

Integer 
LEA 

Port 6 Port 7 

Store 
 Address 

Load 
Data 

Store 
 Address 

Integer 
Alu 

Store 
Address 

Integer 
Shift 

Branch 
Unit 

Vector 
Logical 

Source: IDF 2012  
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Memory Hierarchy 

 From CPU to 
main memory 
on a Nehalem 
processor 
 With 

multicore, 
memory 
bandwidth is 
shared 
between 
cores in the 
same 
processor 
(socket) 

c = cycle 

Processor Core 
(Registers) 

L1D 
(32 KB) 

L2 
(256 KB) 

Local memory 
(large) 

64 B/2c (R+W), 10 c latency 

~24 B/c for all cores 
> 200 c latency 

L1I 
(32 KB) 

64 B/1c (R+W), 4 c latency 

Shared L3 
(8192 KB) 

64 B/2c for all cores 
> 35 c latency 
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GPUs: 7 dimensions of performance 

 First four dimensions: 
 Pipelining 
 Superscalar (dual issue) 
 Threads (32) 
 Instruction Scheduler (4) 

 Then, there are: 
 Warps 

 Last dimensions: 
 Multiple SMs 
 Multiple accelerators 

Threads 

Superscalar 

Pipelining 

Warps 

Instruction Schedulers 

Cards 

SM 
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Streaming Multiprocessor Architecture 

Source: NVIDIA white paper 
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Amdahl’s law 
 Maximum speedup defined by Amdahl’s law 

 

 
 

 

 Three possibilities 
 Speedup less than thread-count: sub-linear 
 Speedup equal to thread-count: linear 
 Speed-up greater than thread-count: super-linear 

n
ppp nS

+−
=

1
1max )( n = #threads,  p = parallel fraction 

Gene 
Amdahl 
(born: 
1922) 
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Scaled Speedup (Gustafson-Barsis’s law) 

 Amdahl’s law does not take into account 
 Overhead costs 
 Natural desire to increase the problem size 

when computing with more cores 

 

 Increasing the core count enables 
 An increase of the problem size   A 

decrease of the sequential fraction of 
computation  Increased speed-up 

John L. Gustafson  
CalTech in 1977 

(Moved from Intel to 
AMD in 2012) 

Edwin Barsis: 
Director at Sandia 
Labs (at the time) 
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Recommendations 
(based on observations in openlab) 
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A proposal for “agile” software: 
1) Seek out parallelism at all levels 

a. Events, tracks, vertices, etc. 
b. Perform “chunk” processing (removing event separation) 

2) Build forward scalability 

3) Create compute-intensive kernels 

4) Optimise data layout for locality of reference 

5) Performance-oriented Code 

6) Combine broad programming talents 

7) Use best-of-breed tools 
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Concurrency in High Energy Physics 
 We are “blessed” with lots of it: 
 Entire events 
 Particles, hits, tracks and vertices 
 Physics processes 
 I/O streams (ROOT trees, branches) 
 Buffer handling (also data compaction, etc.) 
 Fitting variables 
 Partial sums, partial histograms 
 and many others ….. 

 Usable for both data and task parallelism! 

 But, fine-grained parallelism is not well exposed in 
today’s C++ frameworks 
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The holy grail: Forward scalability 

 Not only should a program be written in such a way that it 
extracts maximum performance from today’s hardware 

 On future processors, performance should scale 
automatically 
 In the worst case, one would have to recompile or relink 

 Additional CPU/GPU hardware, be it cores/threads or 
vectors, would automatically be put to good use 

 Scaling would be as expected: 
 If the number of cores (or the vector size) doubled: 

 Scaling would be close to 2x, but certainly not just a few percent 

 We cannot afford to “rewrite” our software for every 
hardware change! 
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Kernel-oriented Programming 
 Take the whole program and its execution behaviour 

into account 
 Get yourself a global overview as soon as possible 

 Via early prototyping with realistic algorithms/data 
 Influence early the design and definitely the implementation 

 Foster clear split: 
 Prepare to compute 
 Do the heavy computation 

 In kernels, where you go after all the available parallelism 

 Post-processing 

 Often, a single kernel is not sufficient 
 A sequence of kernels may be needed 

Heavy compute Pre Post 
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CPU / GPU co-existence 

 What I would like to see happen to a (possibly dusty, 
sequential) x86 application: 

 A strong porting effort to move it to the GPU 
 A good “kernel-oriented design” that aims for a triple-digit 

speed-up 

 Then, a solid port back to the CPU servers 
 Exploiting vectors and cores 

 Outcome: 
 Applications that can profit from new breakthroughs on 

either side of the fence  
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CPU / GPU comparison (A case study) 
 A study presented by Robert J. Harrison, ORNL 
 3 years old (but approach still highly interesting) 
 Metropolis Monte Carlo (Chemistry benchmark) 

 Hardware: 
 NVIDIA Tesla C1060 @ 1.3 GHz 

 240 cores, 1/8 DP MADD/cycle 

 Intel Core I7 920 @ 2.67 GHz 
 Quad core, single socket, 4 DP FLOPS/cycle 

 Performance of CUDA kernel (initial port) 
 520x faster than Intel (CPU & compiler) 

 

1.8 : 1 ratio 

Accelerating past the petascale. A case study of GPGPUs in chemistry (R.J.Harrison, UT/ORNL, 2010) 
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CPU / GPU comparison (Case study – cont’d) 

 Second step: 
 Go back and understand all performance dimensions of 

the CPU 
 In particular, get vectorisation to work 

 Bottom line: 
 Improvement: 30x; new NVIDIA : Intel ratio (17.6x) 
 ‘The optimal x86 and CUDA kernels become “identical” ‘ 

 R.J. Harrison’s conclusion: 
 “Any credible architecture benchmark must back port the 

CUDA kernel to x86 and vectorise it” 
 In the name of “architectural freedom” 
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Data layout: SoA versus AoS 

 In general, both GPUs and 
CPUs prefer the former! 

 Structure of Arrays (SoA): 

 

 Array of Structures (AoS): 
Z1 Z2 Z3 Z4 Z5 Z6 

Y1 Y2 Y3 Y4 Y5 Y6 

X1 X2 X3 X4 X5 X6 

SP1 
X,Y, Z 

SP2 
X,Y, Z 

SP3 
X,Y, Z 

SP4 
X,Y, Z 

SP5 
X,Y, Z 

SP6 
X,Y, Z 

Spacepoints 

We need Data-Oriented Designs! 
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Performance-oriented code 

 C++ for performance 
Use light-weight C++ constructs 
Minimize virtual functions 
 Inline whenever important 
Optimize the use of math functions 

– SQRT, DIV 
– LOG, EXP, POW 
– SIN, COS, ATAN2 

 
 

 
 
 

 

 

Learn to inspect the compiler-generated assembly, 
especially of kernels 

Use vector 
libraries 
whenever 
possible 
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Performance tools 

 Surround yourself with good tools: 
 Compilers (not just one!) 
 Libraries 
 Profilers 
 Debuggers 
 Thread 

checkers 
 Thread 

profilers 
Image: software.intel.com 
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Broad Programming Talent 
 In order to cover as many layers as possible 

Problem 
Algorithms, abstraction 

Language/Source program 

System architecture 
Instruction set 
µ-architecture 

Circuits 
Electrons 

Compiled code, libraries 

Solution 
specialists 

Technology 
specialists 
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HEP examples 
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Examples of parallelism: 
CBM/ALICE track fitting 

 Extracted from the High 
Level Trigger (HLT) Code 
 Originally ported to IBM’s 

Cell processor 

 Tracing particles in a 
magnetic field  
 Embarrassingly parallel 

code 

 Re-optimization on x86-64 
systems 
 Using vectors instead of 

scalars 

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit” 
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf 

“Compressed Baryonic Matter” 
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CBM/ALICE track fitting 

 Details of the re-optimization on x86-64: 
 Part 1: use SSE vectors instead of scalars 

 Operator overloading allows seamless change of data types 
 Intrinsics (from Intel/GNU header file): Map directly to 

instructions: 
– __mm_add_ps  corresponds directly to ADDPS, the instruction 

that operates on four packed, single-precision FP numbers 
● 128 bits in total 

 Classes 
– P4_F32vec4 – packed single class with overloaded operators 

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) { 
return _mm_add_ps(a,b); } 

 
 Result: 4x speed increase from x87 scalar to packed SSE 

(single precision) 
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Examples of parallelism: 
CBM track fitting 
 Re-optimization on x86-64 systems 
 Step 1: Data parallelism using SIMD instructions 
 Step 2: use TBB (or OpenMP) to scale across cores 

From H.Bjerke/CERN openlab, I.Kisel/GSI 

V T 
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Example: ROOT minimization and fitting 
 Minuit parallelization is independent of user code 

 
 Log-likelihood parallelization (splitting the sum) is quite efficient 

 
 Example on a 32-core server: 

 
 
 
 
 
 
 
 
 
 

 In principle, we can have combinations of:  
 vectorization (using SSE or AVX) 
 parallelization via multi-threading in a multi-core CPU  
 multiple process in a distributed computing environment 

 

Recent paper: 
Comparison of 
Software Technologies 
for Vectorization and 
Parallelization 
(CERN openlab, 2012) 

V T 
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Examples of parallelism: GEANT4 

 Initially; ParGeant4 (Gene Cooperman/NEU) 
 implemented event-level parallelism to simulate separate 

events across remote nodes. 

 New prototype re-implements thread-safe event-level 
parallelism inside a multi-core node 

 Done by NEU PhD student Xin Dong: 
– Using FullCMS and TestEM examples 

 Required change of lots of existing classes (10% of 1 MLOC): 
– Especially global, “extrn”, and static declarations 
– Preprocessor used for automating the work. 

 Major reimplementation: 
– Now in separate branch in the G4 source tree 

 Additional memory: Only 25 MB/thread (!) 

T 
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Multithreaded GEANT4 benchmark 
 Excellent “weak” scaling on 32 (real) cores 

 With a 4-socket server 

From A.Nowak/CERN openlab 

T 
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Geant4 in medicine (Another case study) 

SOA: 

Benchmark on Tesla C2070: 
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Concluding remarks 

 Massively parallel hardware is here to stay! 
 Our current software frameworks were not 

developed for such parallelism 
 Nevertheless, in physics, we have the 

parallelism needed 
 Porting to GPUs is beneficial for code 

redesign 
 If you ensure that the CPU version also 

profits, you can have the best of both 
worlds!  
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Thank you! 
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