
Moving to Good Software Designs

(given the complexity of modern
computing devices)

“The 7 dimensions of performance”

Sverre Jarp
CERN

openlab
CTO

IT Dept., CERN

GPUs in High Energy Physics workshop
15 - 16 April 2013

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

2

What is the CERN openlab?

 A science-industry partnership to drive R&D
and innovation with over a decade of success

 Evaluate state-of-the-art technologies in a
challenging environment and improve them

 Test in a research environment today what
will be used in many business sectors
tomorrow

 Train next generation engineers/employees

 Disseminate results and outreach to new
audiences

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

3

Contents

Why worry about performance?

 Complexity in Computing

 Guidelines for SW design

 Some HEP examples

 Conclusions

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

4

Why worry about performance?

 My arguments:
 The “easy ride” disappeared: The frequency scaling we

enjoyed in the past does not exist any longer.
It stopped a decade ago!
 ..and, as a “by-product”, the CPU/GPU architectures are

becoming (much) more complicated

 Performance per watt: There are important thermal issues
associated with large scale computing
 Even when 1W processors exist!

 Performance per €: There are important cost issues
associated with large scale computing
 Even when using “commodity equipment”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

5

Moore’s law
 We continue to double the number of

transistors every other year

 The consequences:
 CPUs

 Single core  Multicore  Manycore
 Hardware vector support
 Hardware threading

 GPUs
 Huge number of floating-point units

 Today, we commonly acquire chips with
1’000’000’000 transistors!
 Intel/AMD server chips and high-end GPU

devices are much more
 Kepler GK110: 7.1 billion transistors

Adapted from Wikipedia From Wikipedia

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

6

“Intel platform 2015” (and beyond)
 Today’s silicon processes:

 32, 28, 22 nm

 Being introduced:
 14 nm (2013/14)

 In research:
 10 nm (2015/16)
 7 nm (2017/18)
 5 nm (2019/20)

– Source: Intel

 Each generation will push the core count:
 We are inside the many-core era (whether we like it or not) !

LHC data

We are here

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

7

Complexity in Computing

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

8

Archaic Computing Units
 As “stupid” as 50 years ago

 Still based on the Von Neumann
architecture

 Primitive “machine language”

 Ferranti Mercury:
 Floating-point calculations

– Add: 3 cycles; Multiply: 5 cycles

 Today:
 Programming for performance

is the same headache as in the
past

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

9

And the language is ancient, too!
 Assembly/machine code!

..B1.31: # Preds ..B1.31 ..B1.30 # Infreq
 movsd (%rsp), %xmm3 #94.17
 lea (%rbx,%rbx,2), %rcx #94.36
 movsd (%rsi,%rcx,8), %xmm2 #94.40
 incl %eax #93.42
 movsd 8(%rsi,%rcx,8), %xmm0 #94.40
 cmpl %edx, %eax #93.39
 mulsd %xmm2, %xmm2 #94.40
 mulsd %xmm0, %xmm0 #94.40
 movsd 16(%rsi,%rcx,8), %xmm1 #94.40
 addsd %xmm0, %xmm2 #94.40
 mulsd %xmm1, %xmm1 #94.40
 movl %eax, %ebx #93.42
 addsd %xmm1, %xmm2 #94.40
 sqrtsd %xmm2, %xmm2 #94.40
 addsd %xmm2, %xmm3 #94.17
 movsd %xmm3, (%rsp) #94.17
 jb ..B1.31 # Prob 82% #93.39

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

10

And, even assembly is “too high level”

 Intel translates x86 assembly instructions
 into micro-operations

 NVIDIA translates PTX (virtual assembly)
 into machine instructions

 So, what does it mean (?) when the hardware tells
you:
 “XXN instructions executed”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

11

Performance: A complicated story!

 We start with a concrete, real-life problem to solve
 For instance, simulate the passage of elementary particles

through matter

 We write programs in high level languages
 C, C++, CUDA, JAVA, Python, etc.

 A compiler (or an interpreter) transforms the high-level code to
machine-level code

 We link in external libraries

 A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

 In most cases, we have little clue as to the efficiency of this
transformation process

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

12

A Complicated Story (in 9 layers!)

Adapted from Y.Patt, U-Austin

 We must avoid being fenced into a single layer!

Problem
Design, Algorithms, Data

Language/Source program

System architecture
Instruction set architecture

µ-architecture
Circuits

Electrons

Compilers; Libraries

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

13

In the days of the Pentium

 Life was really simple:

 Basically two dimensions
 The frequency of the pipeline
 The number of boxes

 The semiconductor industry

increased the frequency

 We acquired the right number of
(single-socket) boxes

Superscalar

Pipelining

Nodes

Sockets

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

14

Frequency scaling
 The 7 “fat” years of frequency scaling in HEP

 The Pentium Pro in 1996: 150 MHz
 The Pentium 4 in 2003: 3.8 GHz (~25x)

 But, this was 10 years ago!

 Since then
 Core 2 systems:

 ~3 GHz
 Multi-core

 Recent CERN purchase:
 Intel Xeon E5-2630L

 “only” 2.00 GHz From A. Nowak/openlab

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

15

Accelerators (1): Nvidia Kepler GPU

 Made available in 4Q2012

 GK110 GPU
 3x DP performance:

 >1 Teraflops

 Innovative design:
 SMX (streaming

multiprocessors)
 Dynamic parallelism for

spawning new threads
 Hyper-Q enables multiple

CPU cores to utilise CUDA
cores

Adapted from Nvidia

Considerable interest
in the HEP community

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

16

Accelerators (2): Intel Xeon Phi
 Intel Many Integrated Cores (MIC):
 Announced at ISC10, available 2 ½ years later
 Based on the x86 architecture, 22nm, ~1.0 GHz
 Many-core (up to 62 cores) + 4-way multithreaded +

512-bit vector unit
 Limited memory: 8 Gigabytes



In Order, 4
threads, SIMD-16

M
em

or
y

C
on

tro
lle

r

S
ys

te
m

In

te
rfa

ce

D
is

pl
ay

In

te
rfa

ce

M
em

or
y

C
on

tro
lle

r

Te
xt

ur
e

Lo
gi

c
Fi

xe
d

Fu
nc

tio
n

In Order, 4
threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

. . .

. . .

L2 Cache

In Order, 4
threads, SIMD-16

I$ D$

In Order, 4
threads, SIMD-16

I$ D$

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

17

CPU servers: 7 dimensions of performance

 First three dimensions:
 Pipelining
 Superscalar
 Hardware vectors/SIMD

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Vector width

Superscalar

Pipelining

SIMD = Single Instruction Multiple Data

Multithreading

Nodes

Multicore

Sockets

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

18

Seven multiplicative dimensions:
 First three dimensions:
 Pipelining
 Superscalar
 Hardware vectors/SIMD

 Next dimension is a “pseudo”
dimension:
 Hardware multithreading

 Last three dimensions:
 Multiple cores
 Multiple sockets
 Multiple compute nodes

Data parallelism
(Vectors/Matrices)

Task parallelism
(Events/Tracks)

Task/process
parallelism

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

19

Intel Haswell superscalar architecture

 Intel’s Haswell micro-architecture will
execute four instructions in parallel
(across eight ports) in each cycle.

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Vec Int
ALU

x87 FP
Multiply

Vec FMA
Vec FMul

Vector
Logical

Vector
Shift

Integer
Alu

Integer
Alu

Vec Int
ALU

Vector
Logical

Vector
Shuffle

Load
Data

Store
Data

Branch
Unit

DIV
SQRT

x87 FP
Add

Vec FMA
Vec FMul
Vec FAdd

Integer
Shift

Integer
MUL

Integer
LEA

PSAD

String
Compare

Integer
LEA

Port 6 Port 7

Store
 Address

Load
Data

Store
 Address

Integer
Alu

Store
Address

Integer
Shift

Branch
Unit

Vector
Logical

Source: IDF 2012

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

20

Memory Hierarchy

 From CPU to
main memory
on a Nehalem
processor
 With

multicore,
memory
bandwidth is
shared
between
cores in the
same
processor
(socket)

c = cycle

Processor Core
(Registers)

L1D
(32 KB)

L2
(256 KB)

Local memory
(large)

64 B/2c (R+W), 10 c latency

~24 B/c for all cores
> 200 c latency

L1I
(32 KB)

64 B/1c (R+W), 4 c latency

Shared L3
(8192 KB)

64 B/2c for all cores
> 35 c latency

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

21

GPUs: 7 dimensions of performance

 First four dimensions:
 Pipelining
 Superscalar (dual issue)
 Threads (32)
 Instruction Scheduler (4)

 Then, there are:
 Warps

 Last dimensions:
 Multiple SMs
 Multiple accelerators

Threads

Superscalar

Pipelining

Warps

Instruction Schedulers

Cards

SM

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

22

Streaming Multiprocessor Architecture

Source: NVIDIA white paper

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

23

Amdahl’s law
 Maximum speedup defined by Amdahl’s law

 Three possibilities
 Speedup less than thread-count: sub-linear
 Speedup equal to thread-count: linear
 Speed-up greater than thread-count: super-linear

n
ppp nS

+−
=

1
1max)(n = #threads, p = parallel fraction

Gene
Amdahl
(born:
1922)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

24

Scaled Speedup (Gustafson-Barsis’s law)

 Amdahl’s law does not take into account
 Overhead costs
 Natural desire to increase the problem size

when computing with more cores

 Increasing the core count enables
 An increase of the problem size  A

decrease of the sequential fraction of
computation  Increased speed-up

John L. Gustafson
CalTech in 1977

(Moved from Intel to
AMD in 2012)

Edwin Barsis:
Director at Sandia
Labs (at the time)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

25

Recommendations
(based on observations in openlab)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

26

A proposal for “agile” software:
1) Seek out parallelism at all levels

a. Events, tracks, vertices, etc.
b. Perform “chunk” processing (removing event separation)

2) Build forward scalability

3) Create compute-intensive kernels

4) Optimise data layout for locality of reference

5) Performance-oriented Code

6) Combine broad programming talents

7) Use best-of-breed tools

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

27

Concurrency in High Energy Physics
 We are “blessed” with lots of it:
 Entire events
 Particles, hits, tracks and vertices
 Physics processes
 I/O streams (ROOT trees, branches)
 Buffer handling (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

 But, fine-grained parallelism is not well exposed in
today’s C++ frameworks

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

28

The holy grail: Forward scalability

 Not only should a program be written in such a way that it
extracts maximum performance from today’s hardware

 On future processors, performance should scale
automatically
 In the worst case, one would have to recompile or relink

 Additional CPU/GPU hardware, be it cores/threads or
vectors, would automatically be put to good use

 Scaling would be as expected:
 If the number of cores (or the vector size) doubled:

 Scaling would be close to 2x, but certainly not just a few percent

 We cannot afford to “rewrite” our software for every
hardware change!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

29

Kernel-oriented Programming
 Take the whole program and its execution behaviour

into account
 Get yourself a global overview as soon as possible

 Via early prototyping with realistic algorithms/data
 Influence early the design and definitely the implementation

 Foster clear split:
 Prepare to compute
 Do the heavy computation

 In kernels, where you go after all the available parallelism

 Post-processing

 Often, a single kernel is not sufficient
 A sequence of kernels may be needed

Heavy compute Pre Post

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

30

CPU / GPU co-existence

 What I would like to see happen to a (possibly dusty,
sequential) x86 application:

 A strong porting effort to move it to the GPU
 A good “kernel-oriented design” that aims for a triple-digit

speed-up

 Then, a solid port back to the CPU servers
 Exploiting vectors and cores

 Outcome:
 Applications that can profit from new breakthroughs on

either side of the fence

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

31

CPU / GPU comparison (A case study)
 A study presented by Robert J. Harrison, ORNL
 3 years old (but approach still highly interesting)
 Metropolis Monte Carlo (Chemistry benchmark)

 Hardware:
 NVIDIA Tesla C1060 @ 1.3 GHz

 240 cores, 1/8 DP MADD/cycle

 Intel Core I7 920 @ 2.67 GHz
 Quad core, single socket, 4 DP FLOPS/cycle

 Performance of CUDA kernel (initial port)
 520x faster than Intel (CPU & compiler)

1.8 : 1 ratio

Accelerating past the petascale. A case study of GPGPUs in chemistry (R.J.Harrison, UT/ORNL, 2010)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

32

CPU / GPU comparison (Case study – cont’d)

 Second step:
 Go back and understand all performance dimensions of

the CPU
 In particular, get vectorisation to work

 Bottom line:
 Improvement: 30x; new NVIDIA : Intel ratio (17.6x)
 ‘The optimal x86 and CUDA kernels become “identical” ‘

 R.J. Harrison’s conclusion:
 “Any credible architecture benchmark must back port the

CUDA kernel to x86 and vectorise it”
 In the name of “architectural freedom”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

33

Data layout: SoA versus AoS

 In general, both GPUs and
CPUs prefer the former!

 Structure of Arrays (SoA):

 Array of Structures (AoS):
Z1 Z2 Z3 Z4 Z5 Z6

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6

SP1
X,Y, Z

SP2
X,Y, Z

SP3
X,Y, Z

SP4
X,Y, Z

SP5
X,Y, Z

SP6
X,Y, Z

Spacepoints

We need Data-Oriented Designs!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

34

Performance-oriented code

 C++ for performance
Use light-weight C++ constructs
Minimize virtual functions
 Inline whenever important
Optimize the use of math functions

– SQRT, DIV
– LOG, EXP, POW
– SIN, COS, ATAN2

Learn to inspect the compiler-generated assembly,
especially of kernels

Use vector
libraries
whenever
possible

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

35

Performance tools

 Surround yourself with good tools:
 Compilers (not just one!)
 Libraries
 Profilers
 Debuggers
 Thread

checkers
 Thread

profilers
Image: software.intel.com

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

36

Broad Programming Talent
 In order to cover as many layers as possible

Problem
Algorithms, abstraction

Language/Source program

System architecture
Instruction set
µ-architecture

Circuits
Electrons

Compiled code, libraries

Solution
specialists

Technology
specialists

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

37

HEP examples

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

38

Examples of parallelism:
CBM/ALICE track fitting

 Extracted from the High
Level Trigger (HLT) Code
 Originally ported to IBM’s

Cell processor

 Tracing particles in a
magnetic field
 Embarrassingly parallel

code

 Re-optimization on x86-64
systems
 Using vectors instead of

scalars

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf

“Compressed Baryonic Matter”

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

39

CBM/ALICE track fitting

 Details of the re-optimization on x86-64:
 Part 1: use SSE vectors instead of scalars

 Operator overloading allows seamless change of data types
 Intrinsics (from Intel/GNU header file): Map directly to

instructions:
– __mm_add_ps corresponds directly to ADDPS, the instruction

that operates on four packed, single-precision FP numbers
● 128 bits in total

 Classes
– P4_F32vec4 – packed single class with overloaded operators

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return _mm_add_ps(a,b); }

 Result: 4x speed increase from x87 scalar to packed SSE

(single precision)

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

40

Examples of parallelism:
CBM track fitting
 Re-optimization on x86-64 systems
 Step 1: Data parallelism using SIMD instructions
 Step 2: use TBB (or OpenMP) to scale across cores

From H.Bjerke/CERN openlab, I.Kisel/GSI

V T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

41

Example: ROOT minimization and fitting
 Minuit parallelization is independent of user code

 Log-likelihood parallelization (splitting the sum) is quite efficient

 Example on a 32-core server:

 In principle, we can have combinations of:
 vectorization (using SSE or AVX)
 parallelization via multi-threading in a multi-core CPU
 multiple process in a distributed computing environment

Recent paper:
Comparison of
Software Technologies
for Vectorization and
Parallelization
(CERN openlab, 2012)

V T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

42

Examples of parallelism: GEANT4

 Initially; ParGeant4 (Gene Cooperman/NEU)
 implemented event-level parallelism to simulate separate

events across remote nodes.

 New prototype re-implements thread-safe event-level
parallelism inside a multi-core node

 Done by NEU PhD student Xin Dong:
– Using FullCMS and TestEM examples

 Required change of lots of existing classes (10% of 1 MLOC):
– Especially global, “extrn”, and static declarations
– Preprocessor used for automating the work.

 Major reimplementation:
– Now in separate branch in the G4 source tree

 Additional memory: Only 25 MB/thread (!)

T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

43

Multithreaded GEANT4 benchmark
 Excellent “weak” scaling on 32 (real) cores

 With a 4-socket server

From A.Nowak/CERN openlab

T

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

44

Geant4 in medicine (Another case study)

SOA:

Benchmark on Tesla C2070:

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

45

Concluding remarks

 Massively parallel hardware is here to stay!
 Our current software frameworks were not

developed for such parallelism
 Nevertheless, in physics, we have the

parallelism needed
 Porting to GPUs is beneficial for code

redesign
 If you ensure that the CPU version also

profits, you can have the best of both
worlds!

Sverre Jarp - CERN

Computer Architecture and Performance Tuning

46

Thank you!

	Slide Number 1
	What is the CERN openlab?
	Contents
	Why worry about performance?
	Moore’s law
	“Intel platform 2015” (and beyond)
	Complexity in Computing
	Archaic Computing Units
	And the language is ancient, too!
	And, even assembly is “too high level”
	Performance: A complicated story!
	A Complicated Story (in 9 layers!)
	In the days of the Pentium
	Frequency scaling
	Accelerators (1): Nvidia Kepler GPU
	Accelerators (2): Intel Xeon Phi
	CPU servers: 7 dimensions of performance
	Seven multiplicative dimensions:
	Intel Haswell superscalar architecture
	Memory Hierarchy
	GPUs: 7 dimensions of performance
	Streaming Multiprocessor Architecture
	Amdahl’s law
	Scaled Speedup (Gustafson-Barsis’s law)
	Recommendations�(based on observations in openlab)
	A proposal for “agile” software:
	Concurrency in High Energy Physics
	The holy grail: Forward scalability
	Kernel-oriented Programming
	CPU / GPU co-existence
	CPU / GPU comparison (A case study)
	CPU / GPU comparison (Case study – cont’d)
	Data layout: SoA versus AoS
	Performance-oriented code
	Performance tools
	Broad Programming Talent
	HEP examples
	Examples of parallelism:�CBM/ALICE track fitting
	CBM/ALICE track fitting
	Examples of parallelism:�CBM track fitting
	Example: ROOT minimization and fitting
	Examples of parallelism: GEANT4
	Multithreaded GEANT4 benchmark
	Geant4 in medicine (Another case study)
	Concluding remarks
	Thank you!

