
New libfabric based
transport for nanomsg

Alice Offline Week
Ioannis Charalampidis

›  April 1, 2016

A bit of Background

›  Openlab collaboration with CISCO
§  Interface CISCO’s user-space NICs (usNIC) to ALICE

experimental software
§  Benchmark performance
§  Decide on further use-cases

›  An interesting by-product
§  A new transport for the nanomsg library
§  https://github.com/wavesoft/nanomsg-transport-ofi/

April 1, 2016 Ioannis Charalampidis – CERN Openlab 2

“User-Space” NIC

April 1, 2016 Ioannis Charalampidis – CERN Openlab 3

Bypass the Linux
Kernel and
communicate
directly with the NIC
from User Space

ALICE Software & usNIC

›  Requirements
§  It must interface with current ALICE software without

any modification in them

›  Extend FairMQ
§  It’s a lightweight wrapper around ØMQ / nanomsg
§  We have to extend nanomsg or ØMQ
§  We decided to go with nanomsg, because of cleaner

and easily extensible API

April 1, 2016 Ioannis Charalampidis – CERN Openlab 4

Extending nanomsg

April 1, 2016 Ioannis Charalampidis – CERN Openlab 5

FairMQ Abstraction

Pub /
Sub

Push
/ Pull

Protocol

nanomsg Message
System

… TCP UDP

Transport

…(New)

Benefit from
existing protocol

support

Focus on the
transport

Components of nanomsg

April 1, 2016 Ioannis Charalampidis – CERN Openlab 6

Socket Endpoint(s)

Protocol Transport

s = nn_socket(AF_SP, NN_PULL) nn_bind(s, “tcp://1.2.3.4:123”)

nn_send(s, ...)

NN_PULL tcp

POSIX send

1 2

3

Transport in nanomsg

April 1, 2016 Ioannis Charalampidis – CERN Openlab 7

Listening EP
FSM

Connecting EP
FSM

Connected EP
FSM

ep vfptr

ep vfptr

Implements the transport
virtual functions : send,
recv, stop, destroy

Since the logic of a
connected endpoint is
the same, it’s isolated

in a separate FSM

Bind Factory

Connect Factory

Interfacing to usNIC

›  Difficulties
§  The core of ØMQ or NanoMsg is designed

around the UNIX sockets
§  usNIC API is closer to MPI or RDMA

› We are using libfabric
§  It is somewhere in the middle

April 1, 2016 Ioannis Charalampidis – CERN Openlab 8

OpenFabrics Interfaces (OFI)

April 1, 2016 Ioannis Charalampidis – CERN Openlab 9

Unified libfabric API

Different Low-Lattency, High-Performance Fabric Hardware

libfabric Terminology

April 1, 2016 Ioannis Charalampidis – CERN Openlab 10

Fabric

Domain Active
Endpoint

Passive
Endpoint

“NIC”

“IP Address”

“Listening Socket”

“Connecting Socket”

Event
Qeueue

Connection Events

Completion
Qeueue

Reception /
Transmission

Completion Events

libfabric Features

April 1, 2016 Ioannis Charalampidis – CERN Openlab 11

›  Active Endpoint Types
§  FI_DGRAM – Unreliable Datagrams (ex. UDP)
§  FI_RDM – Reliable Datagrams (ex. RDMA)
§  FI_MSG – Connection-aware message passing (ex. TCP)

›  High-level API is close to socket API
§  The provider implements fragmentation and flow control
§  Simple functions : fi_send(), fi_recv()
§  It uses RDMA behind the scenes!

fi_send(
 endpoint,
 buffer, len,
 mr_desc,
 context
);

libfabric API

April 1, 2016 Ioannis Charalampidis – CERN Openlab 12

buffer … ..

fi_recv(
 endpoint,
 buffer, len,
 mr_desc,
 context
);

buffer … ..

RDMA*

Memory Region Memory Region

Memory Registration

›  Register outgoing messages on-the-fly
§  OFI transport has re-usable memory “banks”
§  If the pointer being sent belongs to a registered region,

the MR description from that bank will be used
§  Otherwise the oldest bank will be de-registered and

populated with the new pointer information

April 1, 2016 Ioannis Charalampidis – CERN Openlab 13

ptr = 0x1234
len = 1024
mr = #123

ptr = 0x2345
len = 2048
mr = #124

ptr = null
len = 0
(free)

ptr = null
len = 0
(free)

fi_send(
 endpoint,
 buffer, len,
 mr_desc,
 context
);

libfabric Events

April 1, 2016 Ioannis Charalampidis – CERN Openlab 14

fi_recv(
 endpoint,
 buffer, len,
 mr_desc,
 context
);

Tx CQ Rx CQ Tx CQ Rx CQ

SEND

ACK

fi_cq_read(&event); fi_cq_read(&event);

* libfabric has custom event polling functions

Receiving Events

›  libfabric API has custom polling functions
§  We cannot re-use the existing FD-based solutions *

›  OFI Transport polls the CQs and EQs
§  A dedicated thread polls all the currently active CQs/

EQs and it forwards the events to the appropriate
endpoint FSMs

§  Where supported, it uses wait sets to synchronously
wait for an event from any source, otherwise it spins

April 1, 2016 Ioannis Charalampidis – CERN Openlab 15

Receiving Events

›  * NOTE: The libfabric specs DO support FDs
§  It’s possible to create an EQ or CQ with an underlying

‘waitable’ object, such as a mutex or a file descriptor
§  However it’s not (yet) supported by all providers

April 1, 2016 Ioannis Charalampidis – CERN Openlab 16

The OFI Transport

April 1, 2016 Ioannis Charalampidis – CERN Openlab 17

Listening EP
FSM

Passive Endpoint

Connected EP
FSM

Active
Endpoint

Worker Pool
Thread

Connecting EP
FSM

Worker

Worker

EQ

EQ CQ CQ

Fabric,
Domain

Fabric,
Domain

Bind

Connect

The OFI Transport

›  The ‘ofi’ transport is selected with the
nanomsg uri:
§  ofi://ip:port[@fabric[:provider]]
§  The appropriate fabric is selected by it’s IP address and/

or the fabric specifications provided

›  Seamless transition to other providers
§  The transport is completely agnostic to the provider. The

same code works the same with infiniband, omnipath,
usnic etc.

April 1, 2016 Ioannis Charalampidis – CERN Openlab 18

Zero-Copy in nanomsg

›  Buffers in nanomsg are organized in chunks
§  Each chunk has a reference counter
§  Instead of copying, it increments the reference number

›  When data from a raw pointer are to be sent,
they are copied in a new chunk
§  In order to avoid this, the nn_allocmsg function should

be called to allocate a new chunk in advance
§  Till now (v0.8-beta) it’s not possible to allocate a chunk

from existing data

April 1, 2016 Ioannis Charalampidis – CERN Openlab 19

Additions to nanomsg

›  1. Chainable chunk destructors
§  To allow transports to track when a chunk is free’d in

order to invalidate the memory registration.

›  2. Create nn_msg from user pointer
§  Instead of letting nanomsg allocate the message body,

the the function nn_allocmsg_ptr enables creation of
a zero-copy message from existing data

›  Pull request submitted :
§  https://github.com/nanomsg/nanomsg/pull/612

April 1, 2016 Ioannis Charalampidis – CERN Openlab 20

Benchmarks

›  Test set-up
§  Intel Xeon E5-2690

̵  2.9 GHz
̵  8 core (16 threads)
̵  L2 8x256 KB
̵  L3 or LLC (8x2.5MB)

§  InfiniBand FDRx4 (56 Gb/s)
̵  Mellanox MT27500

(ConntctX-3)

§  CentOS 7.2.1511
̵  3.10.0-327.4.5.el7.x86_64

§  nanomsg-transport-ofi 1.0.0
̵  Beta version

April 1, 2016 Ioannis Charalampidis – CERN Openlab 21

Benchmarks

April 1, 2016 Ioannis Charalampidis – CERN Openlab 22

0.00 Gbit/s

5.00 Gbit/s

10.00 Gbit/s

15.00 Gbit/s

20.00 Gbit/s

25.00 Gbit/s

30.00 Gbit/s

35.00 Gbit/s

40.00 Gbit/s

45.00 Gbit/s

1K 10K 100K 1M 10M 25M 50M 75M 100M

 verbs - OFI IPoIB - iperf

Warning! Preliminary results with early beta version of the transport.
 More benchmarks are currently undergoing.

Conclusions

›  The nanomsg OFI transport enables socket-like
interface to high performance RDMA fabrics, such
as Infiniband, Omni-Path, usNIC etc.

›  Even from the early development versions the
performance measurements looks promising

›  There is still lots of room for improvement
§  Better memory registration, stability issues, etc.

April 1, 2016 Ioannis Charalampidis – CERN Openlab 23

