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A bit of Background 

›  Openlab collaboration with CISCO 
§  Interface CISCO’s user-space NICs (usNIC) to ALICE 

experimental software 
§  Benchmark performance 
§  Decide on further use-cases 

›  An interesting by-product 
§  A new transport for the nanomsg library 
§  https://github.com/wavesoft/nanomsg-transport-ofi/  
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“User-Space” NIC 
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Bypass the Linux 
Kernel and 
communicate 
directly with the NIC 
from User Space 



ALICE Software & usNIC 

›  Requirements 
§  It must interface with current ALICE software without 

any modification in them 

›  Extend FairMQ 
§  It’s a lightweight wrapper around ØMQ / nanomsg 
§  We have to extend nanomsg or ØMQ  
§  We decided to go with nanomsg, because of cleaner 

and easily extensible API 
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Extending nanomsg 
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Components of nanomsg 
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Socket Endpoint(s) 

Protocol Transport 

s = nn_socket(AF_SP, NN_PULL) nn_bind(s, “tcp://1.2.3.4:123”) 

nn_send(s, ...) 

NN_PULL tcp 

POSIX send 

1 2
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Transport in nanomsg 
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Listening EP 
FSM 

Connecting EP 
FSM 

Connected EP 
FSM 

ep vfptr 

ep vfptr 

Implements the transport 
virtual functions : send, 
recv, stop, destroy 

Since the logic of a 
connected endpoint is 
the same, it’s isolated 

in a separate FSM 

Bind Factory 

Connect Factory 



Interfacing to usNIC 

›  Difficulties 
§  The core of ØMQ or NanoMsg is designed 

around the UNIX sockets 
§  usNIC API is closer to MPI or RDMA 

› We are using libfabric 
§  It is somewhere in the middle 
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OpenFabrics Interfaces (OFI) 
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Unified libfabric API 

Different Low-Lattency, High-Performance Fabric Hardware 



libfabric Terminology 
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Fabric 

Domain Active 
Endpoint 

Passive 
Endpoint 

“NIC” 

“IP Address” 

“Listening Socket” 

“Connecting Socket” 

Event 
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Connection Events 

Completion 
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Transmission  

Completion Events 



libfabric Features 
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›  Active Endpoint Types 
§  FI_DGRAM – Unreliable Datagrams (ex. UDP) 
§  FI_RDM – Reliable Datagrams (ex. RDMA) 
§  FI_MSG – Connection-aware message passing (ex. TCP) 

›  High-level API is close to socket API 
§  The provider implements fragmentation and flow control 
§  Simple functions : fi_send(), fi_recv() 
§  It uses RDMA behind the scenes! 



fi_send( 
   endpoint,  
   buffer, len,  
   mr_desc, 
   context 
); 

libfabric API 
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buffer … .. 

fi_recv( 
   endpoint,  
   buffer, len,  
   mr_desc, 
   context 
); 

buffer … .. 

RDMA* 

Memory Region Memory Region 



Memory Registration 

›  Register outgoing messages on-the-fly 
§  OFI transport has re-usable memory “banks” 
§  If the pointer being sent belongs to a registered region, 

the MR description from that bank will be used 
§  Otherwise the oldest bank will be de-registered and 

populated with the new pointer information 
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ptr = 0x1234 
len = 1024 
mr = #123 

ptr = 0x2345 
len = 2048 
mr = #124 

ptr = null 
len = 0 
(free) 

ptr = null 
len = 0 
(free) 



fi_send( 
   endpoint,  
   buffer, len,  
   mr_desc, 
   context 
); 

libfabric Events 
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fi_recv( 
   endpoint,  
   buffer, len,  
   mr_desc, 
   context 
); 

Tx CQ Rx CQ Tx CQ Rx CQ 

SEND 

ACK 

fi_cq_read( &event ); fi_cq_read( &event ); 

* libfabric has custom event polling functions 



Receiving Events 

›  libfabric API has custom polling functions 
§  We cannot re-use the existing FD-based solutions * 

›  OFI Transport polls the CQs and EQs 
§  A dedicated thread polls all the currently active CQs/

EQs and it forwards the events to the appropriate 
endpoint FSMs 

§  Where supported, it uses wait sets to synchronously 
wait for an event from any source, otherwise it spins 
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Receiving Events 

›  * NOTE: The libfabric specs DO support FDs 
§  It’s possible to create an EQ or CQ with an underlying 

‘waitable’ object, such as a mutex or a file descriptor 
§  However it’s not (yet) supported by all providers 
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The OFI Transport 
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The OFI Transport 

›  The ‘ofi’ transport is selected with the 
nanomsg uri: 
§  ofi://ip:port[@fabric[:provider]] 
§  The appropriate fabric is selected by it’s IP address and/

or the fabric specifications provided 

›  Seamless transition to other providers 
§  The transport is completely agnostic to the provider. The 

same code works the same with infiniband, omnipath, 
usnic etc. 
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Zero-Copy in nanomsg 

›  Buffers in nanomsg are organized in chunks 
§  Each chunk has a reference counter 
§  Instead of copying, it increments the reference number 

›  When data from a raw pointer are to be sent, 
they are copied in a new chunk 
§  In order to avoid this, the nn_allocmsg function should 

be called to allocate a new chunk in advance 
§  Till now (v0.8-beta) it’s not possible to allocate a chunk 

from existing data 
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Additions to nanomsg 

›  1. Chainable chunk destructors 
§  To allow transports to track when a chunk is free’d in 

order to invalidate the memory registration. 

›  2. Create nn_msg from user pointer 
§  Instead of letting nanomsg allocate the message body, 

the the function nn_allocmsg_ptr enables creation of 
a zero-copy message from existing data 

›  Pull request submitted : 
§  https://github.com/nanomsg/nanomsg/pull/612  
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Benchmarks 

›  Test set-up 
§  Intel Xeon E5-2690 

̵  2.9 GHz 
̵  8 core (16 threads) 
̵  L2 8x256 KB 
̵  L3 or LLC (8x2.5MB) 

§  InfiniBand FDRx4 (56 Gb/s) 
̵  Mellanox MT27500 

(ConntctX-3) 

§  CentOS 7.2.1511 
̵  3.10.0-327.4.5.el7.x86_64 

§  nanomsg-transport-ofi 1.0.0 
̵  Beta version 
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Benchmarks 
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Warning! Preliminary results with early beta version of the transport.  
                More benchmarks are currently undergoing. 



Conclusions 

›  The nanomsg OFI transport enables socket-like 
interface to high performance RDMA fabrics, such 
as Infiniband, Omni-Path, usNIC etc. 

›  Even from the early development versions the 
performance measurements looks promising 

›  There is still lots of room for improvement 
§  Better memory registration, stability issues, etc. 
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