

The LHC computing model and its evolution

Dr Bob Jones CERN

Bob.Jones <at> CERN.ch

States

- ~ 2300 staff
- ~ 790 other paid personne
- > 10000 users

Budget (2011) ~1000 MCHF

- 1 Candidate for Accession: Romania
- 8 Observers to Council: India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO

Answering fundamental questions...

- How to explain particles have mass?
 We have theories but need experimental evidence
- What is 96% of the universe made of?
 We can only see 4% of its estimated mass!
- Why isn't there anti-matter in the universe?
 Nature should be symmetric...
- What was the state of matter just after the « Big Bang » ?
 Travelling back to the earliest instants of the universe would help...

Data acquisition and storage for LHC @ CERN **CERN Computer Centre** LHCb ~ 50 MB/sec ATLAS ~ 320 MB/sec ALICE ~ 100 MB/sec CMS ~ 220 MB/sec

The CERN Data Centre in Numbers

- Data Centre Operations (Tier 0)
 - 24x7 operator support and System Administration services to support 24x7 operation of all IT services.
 - Hardware installation & retirement
 - ~7,000 hardware movements/year; ~1800 disk failures/year
 - Management and Automation framework for large scale Linux clusters

Racks	828
Servers	8938
Processors	15,694
Cores	64,238
HEPSpec06	482,507

Disks	64,109
Raw disk capacity (TiB)	63,289
Memory modules	56,014
Memory capacity (TiB)	158
RAID controllers	3,749

Tape Drives	160
Tape Cartridges	45000
Tape slots	56000
Tape Capacity (TiB)	34000

,		
	High Speed Routers (640 Mbps → 2.4 Tbps)	24
	Ethernet Switches	350
•	10 Gbps ports	2000
	Switching Capacity	4.8 Tbps
tor	1 Gbps ports	16,939
	10 Gbps ports	558
IT F	Power Consumption	2456 KW
Tot	al Power Consumption	3890 KW

Event data taking

In 2011 LHC delivered 5.61 fb⁻¹ of p-p collision data

Cross sections and event rates for various processes as a function of the proton-proton center-of-mass energy.

~300 billion inelastic proton-proton interactions

ATLAS uses a flexible trigger menu to determine which events are interesting enough to record...

ATLAS recorded 1.6 billion events in 2011

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

The LHC Data Challenge

CERN**T**Department

- The accelerator will run for 20 years
- Experiments are producing more than 15 Million Gigabytes of data each year (about 3 million DVDs – 550 years of movies!)
- LHC data analysis requires a computing power equivalent to ~100,000 of today's fastest PC processors
- Requires many cooperating computer centres, as CERN can only provide <20% of the capacity

Worldwide LHC Computing Stid

WLCG – what and why?

The resources are distributed

 for funding and sociological
 reasons

Our task was to make use of the resources available to us – no matter where they are located

Tier-0 (CERN):

- Data recording
- Initial data reconstruction
- Data distribution

Tier-1 (11 centres):

- Permanent storage
- Re-processing
- Analysis

Tier-2 (~130 centres):

- Simulation
- End-user analysis

LHC Networking

LHC PN

Relies on

= CMS = LHCb

- OPN, GEANT, US-LHCNet
- NRENs & other national & international providers

____ 2.5 Gbps ____ 1 Ghas - 310 Mbps - 155 Mbo LT MT connect • communicate • collaborate d Backbone Topology by the end of 2010. GÉANT is operated by DANTE on behalf of Europe's NRENs. USLHCNet e600chi e600ams CHGO DE-KIT AMST **GEANT** star-sdn1 LCG CERN 17

May 2012 - Frédéi

WLCG in 2011

CPU - 11.2010-10.2011

LHC @ 7 TeV

Making what we have today more sustainable is a challenge

- Data issues
 - Data management and access
 - How to make reliable and fault tolerant systems
 - Data preservation and open access
- Need to adapt to changing technologies
 - Use of many-core CPUs
 - Global filesystem-like facilities
 - Virtualisation
 - Commercial cloud computing services (laaS/SaaS/PaaS)
- Network infrastructure
 - Has proved to be very reliable so invest in networks and make full use of the distributed system

CERN openlab in a nutshell

- A science industry partnership to drive R&D and innovation with over a decade of success
- Evaluate state-of-the-art technologies in a challenging environment and improve them
- Test in a research environment today what will be used in many business sectors tomorrow
- Train next generation of engineers/employees
- Disseminate results and outreach to new audiences

CONTRIBUTOR (2012)

A European cloud computing partnership: big science teams up with big business

Email:contact@helix-nebula.eu Twitter: HelixNebulaSC Facebook: HelixNebula.TheScienceCloud

