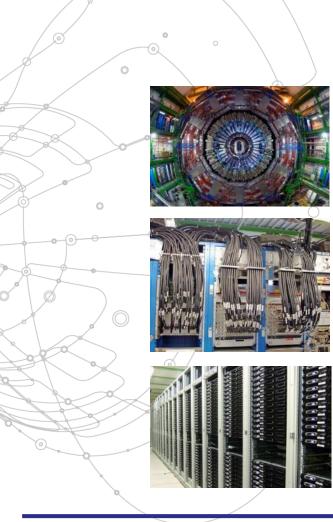
Big Data for Big Discoveries How the LHC looks for Needles by Burning Haystacks

Alberto Di Meglio

CERN openlab Head


DOI: 10.5281/zenodo.45449, CC-BY-SA, images courtesy of CERN

The Large Hadron Collider (LHC)

ALICE

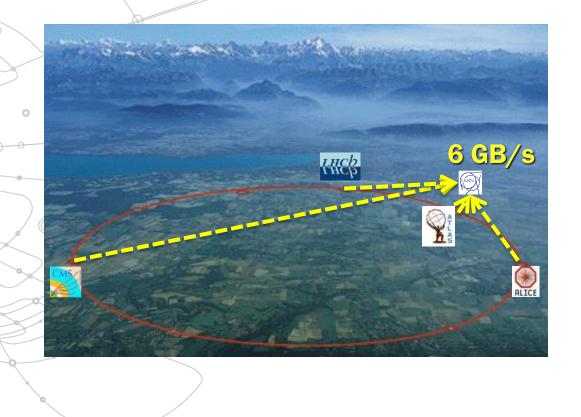
CERN Processi

CMS

Burning Haystacks

The Detectors: 7000 tons "microscopes" 150 million sensors Data generated 40 million times per second

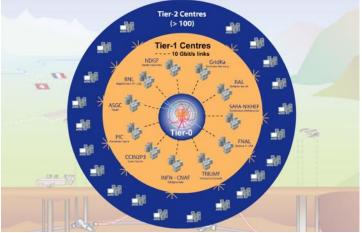
→ Peta Bytes / sec !


Low-level Filters and Triggers 100,000 selections per second

→ Tera Bytes / sec !

High-level filters (HLT) 100 selections per second

→ Giga Bytes / sec !


Storage, Reconstruction, Simulation, Distribution

Worldwide LHC Computing Grid

Tier-0 (CERN): •Data recording •Initial data reconstruction •Data distribution

Tier-1 (12 centres): •Permanent storage •Re-processing •Analysis Tier-2 (68 Federations, ~140 centres):

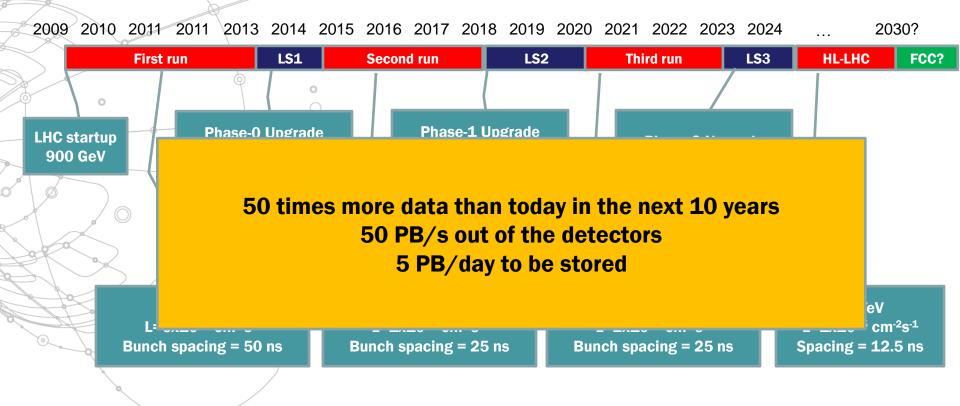
- Simulation
- End-user analysis

•525,000 cores •450 PB

1 PB/s of data generated by the detectors

Up to 30 PB/year of stored data

A distributed computing infrastructure of half a million cores working 24/7


An average of 40M jobs/month

An continuous data transfer rate of 4-6 GB/s across the Worldwide LHC Grid (WLCG)

The Higgs Boson completes the Standard Model, but the Model explains only about 5% of our Universe

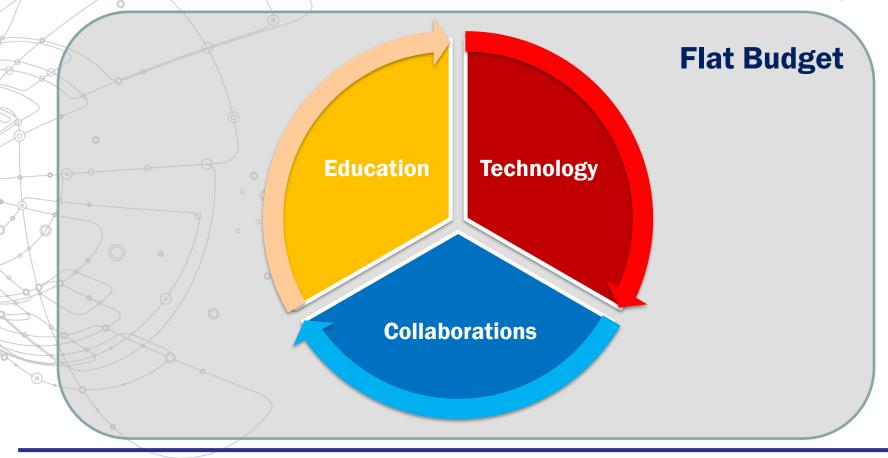
What is the other 95% of the Universe made of? How does gravity really works? Why there is no antimatter in nature? Exotic particles? Dark matter? Extra dimensions?

LHC Schedule

Information Technology Research Areas

Data acquisition and filtering

Computing platforms, data analysis, simulation

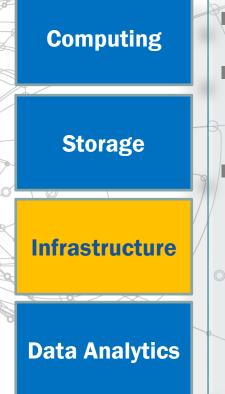

Data storage and long-term data preservation

Compute provisioning (cloud)

Networks

Data analytics

How can we Address the Challenges?


Computing **Storage** Infrastructure **Data Analytics**

More performance, less cost **Redesign of DAQ** Less custom hardware, more off-the-shelf CPUs, fast interconnects, optimized SW Redesign of SW to exploit modern CPU/GPU platforms (vectorization, parallelization)

New architectures (e.g. automata)

Computing **Storage** Infrastructure **Data Analytics**

Reduce data to be stored Move computation from offline to online More tapes, less disks Dynamic data placements New media Object-disks, shingled Persistent meta-data, in-memory ops Flash/SSD, NVRAM, NVDIMM

- Economies of scale Large-scale, joint procurement of services and equipment Hybrid infrastructure models
 - Allow commercial resource procurement
 - Large-scale cloud procurement models are not yet clear

Computing

Storage

Infrastructure

Data Analytics

Reduce analysis cost, decrease time
More efficient operations of the LHC systems
Log analysis, proactive maintenance
Infrastructure monitoring, optimization

Data reduction, event filtering and identification on large data sets (~10PB)

Collaborations

HEP Community

Laboratories, academia, research

New educational requirements

Multicore CPU programming, graphical processors (GPU), multithreaded software

Software & Computing Engineers Data analysis technologies, tools, data storage, visualization, monitoring, security, etc.

Data Scientists

Applications of physics to other domains (hadron therapy, etc.), Knowledge transfer

Multidisciplinary applications

Take-Away Messages

- LHC is a long-term project
 - Need to adapt and evolve in time
 - Look for cost-effective solutions
 - Continuous technology tracking
 - Aim for "just as good as necessary" based on concrete scientific objectives
 - Collaboration and education
 - People is the most important asset to make this endeavour sustainable over time

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. It includes photos, models and videos courtesy of CERN and uses contents provided by CERN and CERN openIab

EXECUTIVE CONTACT

Alberto Di Meglio, CERN openlab Head alberto.di.meglio@cern.ch

TECHNICAL CONTACT

Maria Girone, CERN openlab CTO Maria.girone@cern.ch Fons Rademakers, CERN openlab CRO fons.rademakers@cern.ch

COMMUNICATION CONTACT

Andrew Purcell, CERN openlab Communication Officer Andrew.purcell@cern.ch Mélissa Gaillard, CERN IT Communication Officer melissa.gaillard@cern.ch

ADMIN CONTACT

Kristina Gunne, CERN openlab Administration Officer kristina.gunne@cern.ch

