Evaluating program correctness
and performance with new
software tools from Intel

Andrzej Nowak, CERN openlab
March 18t 2011

CERN IT Technical Forum

\ »

N em Agenda

ey
CERN

openlab

> An introduction to the new generation of
software tools from Intel

> Intel VTune Amplifier XE 2011 - overview

" Description
® Features

> Intel Inspector XE 2011 - overview
" Description
" Features

> API
" QOrganizing data

This presentation contains some material from the Intel tools documentation

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 2

10000000

1000000

100000

10000

1000

100

10

0.1

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

Intel Processor features

ClockSpeed (MHz)
+ MaxTDP (W)
Cache [ME) ™
. -4
Transistors -~
— =Transistors (fit) - !
i S |
e i T S -—
Py Lt L ¥
. * * » * "“ ” o . L F
A . * + R
- . S S
- +
L
*
Andrzej Nowak, CERN openlab 2011 . . | . |
T i T T T T T T T T T T
1571 1974 1977 1980 1983 1586 1589 15592 1555 1558 2001 2004 2007 2010

\ »

il The case for optimization

CERN

openlab

> Limited scaling in hardware
® Some important CPU features that we used to rely on do
not scale or even regress: frequency, cache, bus,
internal buffers, ILP
" Other features (that we typically don’t exploit, but we
should) still scale to an extent: the number of cores,
hardware threads, vectors

> Software complexity is growing rapidly

> Hence our interest in performance tuning
" As Intel puts it: “What in the world is happening to my
computer?”

" What should be true, but rarely is:
® Optimization is an integral part of the software development
process
® Performance is a feature

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 4

il Intel software tools
CERN

openlab

> Designed to aid with developing software on Intel
X86 processors

> Previous generation:
" Linux undermaintained: a lot of functionality missing from the

Linux versions
" Tools:
® VTune and Thread Profiler - performance tuning
®* Thread Checker - threading correctness
* PTU 3.x (“Performance tuning utility”)

> Current (new) generation:
" Redesigned interfaces, new functionality
® Unified functionality across Windows and Linux
" Much better software support (that means CERN software t00)

" CERN openlab participates intensively in Alpha and Beta

programs
" Tools:
® VVTune Amplifier — performance and profiling
® Inspector - threading and memory correctness
* PTU 4.x (experimental/expert - not our focus today)

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

\ »
o"
CERN

openlab

CERN openlab participation

> CERN openlab participated intensively in the Alpha

and Beta phases of the XE tools
" Evaluations with CERN software - several “showstopping”
bugs discovered and fixed, enabling work and avoiding long
delays
" Enhancement proposals and feature requests (dozens made)
" Bugreports (dozens filed)

> Cross-departmental collaborations based on Intel
PTU driven by David Levinthal (Intel)

> Special workshops held for advanced programmers
" Featured lectures by engineers from Intel working on the tools

> Regular openlab workshops now promote these new

tools as well (4 in a year)
" Featuring demos and exercises with both open-source and
Intel tools

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 6

\ »

" iy Package components (both tools)

CERN

openlab

> Graphical interface
" Based on wxWidgets
" Works in Linux as well as Windows

> Command line interface
" Full collection capabilities
" Limited reporting capabilities

> Tool API and libraries
" Available for program instrumentation

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 7

VTune Amplifier

Monitoring and tweaking performance

\»
."
CERN

openlab

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

\ »

" 17 Rationale

CERN

openlab

> Performance tuning is increasingly growing in
importance

> PC tuning was missing a comprehensive product

which supported:
" PMU based monitoring
" |nstrumented monitoring
" Multi-threading and multi-core environments
" Graphical interpretation of results

> Intel VTune was a step in that direction, later with a
“Thread Profiler” addon

> Amplifier is VTune’s spiritual successor, borrowing
features from the experimental Intel Performance
Tuning Utility (PTU)

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 9

\ »
o"
CERN

openlab

Functionality

> A performance tuning tool, adapted to multi-
threaded programs

> Two main modes
" User-mode sampling and tracing - instrumented; may have a
heavy impact on runtime, a lot of data collected (including
stack data)
" Hardware event-based sampling - virtually no impact on
runtime, good for hotspots and hardware utilization
measurements

®* The widely covered perfmon2 does the same thing, but this tool
has much better visualization capabilities

> Operating systems supported (same functionality):
" Linux
" Windows

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 10

\ »

."
CERN -

openlab

>
>

Issue detection capacity

Identify the most time-consuming (hot) functions in your
application and/or on the whole system

Locate sections of code that do not effectively utilize available
processor time

Determine the best sections of code to optimize for sequential
performance and for threaded performance

Locate synchronization objects that affect the application
performance

Find whether, where, and why your application spends time on
input/output operations

Identify and compare the performance impact of different
synchronization methods, different numbers of threads, or
different algorithms

Analyze thread activity and transitions

Identify hardware-related bottlenecks in your code

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 11

\ »
il Select features
CERN

openlab . .
> Analysis tree: Use the performance analysis tree to choose and

configure the type of analysis for your target.

> Start data collection paused: Click the Start Paused button on the
command bar to start collecting performance data after a delay.

> Viewpoints: Choose among preset configurations of windows and
panes available for the analysis result. This helps focus on particular
performance problems.

> Top-down tree: Use to understand which flow in your application is
more performance-critical.

> Timeline analysis: Analyze the thread activity and transitions between
threads.

> Grouping: Group your data in different ways in the Bottom-up window
to analyze the problem from different angles.

> Source analysis: View source with the performance data attributed to
source lines to understand a possible cause of an issue.

> Comparison analysis: Compare performance analysis results for
several application runs to estimate the performance gain you got
after optimization.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 12

\ »

il An example from the HEP world

CERN

openlab

> Based on the multi-threaded Geant 4
prototype with the FullCMS simulation

example
" A multi-threaded simulation of the passage of
particles through the CMS detector

> Light instrumentation discussed (~10 lines
inserted in total)

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 13

poolfws/7 test4Dpftestd[]p-mnniturina - Intel VTune Amplifier XE 2011

File Help

@ =

MNew Amplifier XE Result [¥
& Choose Analysis Type Intel VTune Amplifier X€ 2011

= | Algorithm Analysis Hotspots o Start
& Lightweight Hotspots Identify your most time-consuming source code. Unlike Lightweight Hotspots,]

A Hotspots Hotspots collects stack and call tree information. This analysis type cannot be
to profile the systemn but must either launch an application/process or attach t ¢ @ Start Paused

A Concurrenc This analysis type uses user-mode sampling and tracing collection. Press E

A Locks and Waits

| £ Project Properties
¥ 7 Advanced Intel(R) Core(i p _

A General Exploration () Details

To modify collector options for a predefined analysis type, right-click the
S Bandwidth analysis type in the tree, select Copy from Current entry in the pop-up menu,
A Bandwidth Breakdown and edit the copy of the selected analysis type configuration.

CPU sampling interval, ms: 10

& Memory Access

A Cycles and uOps

) Collect CPU sampling data: With stacks
¥ ¥ Advanced Intel{R) Micro:

) Collect signalling APl data: Mo
A General Exploration

Collect synchronization APl data: No
Collect /O APl data: No

Collect timeline data: fas

& Memory Access
A Cycles and uOps
A Front End Investigatior

¥ Custorn Analysis

-3 Get Command Line |

Thread

\ »

‘ u n n
T by Timeline view
CERN > Blue elements are frames (events)
" as defined by instrumenting the event loop in the simulation
> Yellow elements are tasks (regions)
" As defined by instrumenting the particular regions of the code
> Green is runtime, brown is CPU usage
" Measured by the tool
Qe | 05 1s 1SS 35 2%, de ade. e dos a3 ooy T |RulerAres
I h:;rames
Thread (0x0) Frames ; EL;TT?E”E

Thread (0x56%9efad0)

my_slave thread (0.

my_slave thread (0.

my_slave thread (0.

my_slave thread (0.

Regions

CPU Usage

Frarme Rate

2 User Tasks
CPU Usage
duk CPU Time

i [*] Frame Rate

Wk Frame Rate

fTask Type /Function /Call Stack CPU Timew | Module

T Event loop

05.099s

P CLHEP::RanecuEngine: flat 8.150s . test40
P GAdUniversalFluctuation:: SampleFluctuations 5.Dl:l?5l testd0

P sgrt

4.540s] testd0

P G45tep::UpdateTrack 2.?4?5' test40
P G4Track:: GetVelocity 2.4915' test40
P G4voxelNavigation::LevelLocate 2.3625' test40
P GaNavigationLevelRep:: G4NavigationLevelRep 2.1?85' test40

Plog.L

1.890s | test40

P G4SteppingManager::DefinePhysicalStepLength l.EIGCISl test40

P EAStanninaMananar - Stanmino 1 '."':.Cu:l tactAN

[T [

Interactive profile
display

Selected 1 row(s): 95 0995

I3 | [T
Task stack j

11 stackis) selected. Viewing lofl
= Current stack is 100.0% of selection

| 100.0% (95.099s of 95.099s)

r.r.r.r

testd0!'ParRunManager::DoEventLoop(int, char c ... =
testd0!'G4RunManager::BeamOn(int, char const¥, .
testd0!'G4RunMessenger: SetNewValue(G4Ulcom ..
testd0!'G4Ulcommand::Dolt{G45tring) - G4Ulcom ..
testd0!G4Ulmanager:ApplyCommand({char con ...
testd0!'GAUlImanager: ApplyCommand(G45tring) ...

testd0!'G4Ulbatch:: ExecCommand({G45tring con...
testd0!'G4Ulbatch::SessionStartivoid) - Ga4llbatec ...
testd0!'G4Ulmanager::ExecuteMacroFile(char co .. -] ca" StaCk

\ »
ngm

ok Concurrency histogram
CERN

openlab

> Shows a histogram of elapsed time

according to thread concurrency

" The user may adjust the values as he sees fit -
other views will adjust the colors accordingly

" Concurrency - Hotspots by Thread Concurrency £ @ Intel VTune Amplifier X& 2011

(=0 Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time
the specific number of threads were running simultaneously. Threads are considered running if they are
either actually running on a CPU or are in the runnable state in the OS scheduler. Essentially, Thread
Concurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may be
higherthan CPU usage if threads are in the runnable state and not consuming CPU time,

ra
=

Adjustable sliders

Elapsed Time

9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24

Simultaneously Bunnina Threads

\
“ e Locks and waits analysis (1)

N 4
L 4
openlab . n
> Shows time spent in locks and
synchronization objects
-?_ 5y - L) . - .
&@ Analysis Target Analysis Type | |® Collection Log & Bottom-up BEARCT R LT G
: : N k4 :
e | (=] Wait Time~ * wa.. 2Pl Module Object Type Object Creation Functig
s Oidle @ Poor [Ok [ideal €4 TiM.
< Condition Variable Oxcad836dc 25.163s [15 Ous Condition Wariable ParRunManager::DoEventLoo
ey i ou estdo | Condiion Varial
P Condition Variable Ox42ee1533 1.232s) 8 Condition Variable ParRunManager::DoEventLoo
P Condition Variable 0x9bbh1607c 0.087s B8 Ous Condition Variable ParRunManager::DoEventLoo
I Thread 0x9fsfo03f 0.003s 4 Qus Thread ParRunManager::DoEventLoo
P Stream 0xff2b7fbc 0.002s 1 Ous Stream G4MycoutDestination::Receiv
I stream Oxae30449b 0.000s 1 Ous Stream G4MycoutDestination::Receiv
Selected 1 row(s): 25.163s 15 0Ous

L | [»)] <] »

\ »

il Locks and waits analysis (2)

CERN

openlab . n 8
? > See the precise lock location and the time
u
spent in locks
m Lg and - 3 3 3 & - e AmpliTie U
Analysis Type] [® Collection Log B ParRunM...
[Source ”Assembly] 9 9 | E
. . <r [. -
Line Source Wait Time Wait Count ?mr; B
[idle [l Poor []Ck [Ideal
239 pthread mutex lock(&endLoopmut) ;
240 if (numdfAttach == numOfSlaves)
241 {
242 pthread mutex unlock{&endLoopmut) ;
243 break;
244 }
246 pthread mutex_unlock(&endLoopmut) ;
247 1 =
248
249 J/01.25.2009 Xin Dong: Remove the barrier.
250 pthread mutex_ lock({&endLoopmut) ;
251 numOfAttach = 0; L=
252 pthread cond broadcast(&endLoopcond) ; -
253 pthread mutex_unlock(&endLoopmut) ;]
Selected 1 row(s): =l

(4] I [»)] <] DN

File Help

poolfws/7 testd0p/testd0p - Intel WTune Amplifier XE 2011

. @ b

~a

= db

ro08fei (%

= Front End Investigation - Hardware Event Counts /£ @

€ Analysis Target| | * Analysis Type | |E Collection Log| | Kl Summary

JFuUnction

CLHEF::RanecuEngine::

GdUniversalFluctuation:

sqrt
log.L
G45tep:UpdateTrack
GaTrack: GetVelocity

GdVoxelNavigation::LevellLo:

GadMNavigationLevelRep:
exp.L

G4PhysicsVector: GetValue
Selected 1 rowi(s):

Intel VTune Amplifier X€ 2011

Hardware Event Count

THREAD

E
:5an

18,056,000,000
12,408,000,000
10,202,000,000
7,692,000,000
5,500,000,000
5,570,000,000
5,550,000,000
4,956,000,000
4,490,000,000
4,312,000,000

(GAN

18,056,000,000

INST_RETIR...

ANY

11,806,000,000
5,598,000,000
13,352,000,000
8,704,000,000
9,202,000,000
4,938,000,000
9,278,000,000
10,944,000,000
6,470,000,000

2,620,000,000
11,806,000,000

CPU_CLK_U..

REF

25,404,000,000
17,940,000,000
17,494,000,000
12,038,000,000
11,102,000,000
8,876,000,000
10,442,000,000
9,448,000,000
8,144,000,000

5,282,000,000
25,404,000,000

BR_INST_E..
ANY

931,200,000
1,411,200,000
1,657,600,000

701,600,000
1,098,400,000
1,089,600,000
1,279,200,000

272,000,000

572,800,000

532,800,000

931,200,000

55,360,000
96,400,000

9,840,000
5,240,000
4,240,000
3,760,000
5,760,000

80,000
8,800,000

20,720,000
55,360,000

ILD_STALL.
ANY

11,080,000,000
5,000,000,000
1,600,000,000
3,056,000,000
728,000,000
984,000,000
1,480,000,000
1,184,000,000
872,000,000

328,000,000
11,080,000,000

0
8,000,000

8,000,000

ITLE_MI..

18,400,000
13,600,000
10,400,000

11,200,000

CYCLES 5.

464,000,000
1,608,000,000
1,720,000,000
544,000,000
552,000,000
784,000,000
624,000,000
96,000,000

4,800,000
8,800,000
4,800,000
9,600,000

4,00
g0

18,40

Ot

Thread (0x3...
Thread (0x3..
Thread (0x3..
Thread (0x3.. |
Thread (0x3... |:

Hardware E...

Frame Rate

Timeline view 1\

Lo ettt | b L 0 1k bttt

el Filter: 97.4% is shown

E IR [97 4%] testdO * BRIGCELR

-

Ruler Area
¥ Frames
Thread
[Running
duk Hardware Event. .

{[¥] Hardware Events

Wk Hardware Event. ..
Frame Rate
duk Frame Rate

. Filters - ST -

fpoaliws/7 testd0pftestdOp - Intel VTune Amplifier XE 2011

File Help
) b= W

ro08fei %

Different “views” available
Intel VTune Amplifier X& 2011

% Front End Investigation - Hardware Event Counts £ _s

[® Ansiyais Torget| [~ Anayais Type] [Cottection Log] [summry | YT

JFUnction j
CPU_CLK_UNHALTED. THREAD w INST_RETIRED.ANY

CLHEP:RanecuEngine:flat | 15% [e
G4UniversalFluctuation::Sar 1.0% [N 0.5% [
sqrt 0.5% [1.1% [
log.L 0.6% [0.7% (N
G4Step:UpdateTrack 0.5% (G o.7% [
G4Track: GetVelocity 0.4% [IIEGN 0.4% [[IEGEGB
GavoxelNavigation:LevelLol 0.4% ([N o.7% [
G4NavigationLevelRep:: G4N o.9% [
expL : os% ([
G4PhysicsVector: GetValue
Selected 1 rowi(s):

I = . Ruler Area
Thread (0x3...

Thread (0x3..
Thread (0x3... 2 Running

Thread (0x3... |: [¥] duk Hardware Event...
Thread (0x3... |3 ! [] Hardware Events
Wuk Hardware Event.

eraware £ |, {01000 sl A —

Frame Rate Ban. Lill by bbb i v g aaaunuaad i, duk Frame Rate

[: e

= TR oo~ Different “reference” events available B s 1SSUED CORE ST, = I

=% Frames
Thread

poolfws/7 testd0p/testd0p - Intel WTune Amplifier XE 2011

File Help
) b= b

ro08fei %

& Front End Investigation - Hardware Event Counts £ @ Intel VTune Amplifier XE 2011

€ Analysis Target|| * Analysis Type | |E Collection Log RanecuE...

Source Assembly ‘

RAT STALLS.ROB _READ PORT RESOURCE_STALLS ANY

const int index = seq; 0.2%[0.2%[
long seedl = table[index][0]; 01%] 01%]|
long seed? = table[index][1]; 16%]| 28% [

int k1 = (int)(seedl/ecuyer b); 01%] 01%|
int k2 = (int)(seed2/ecuyer_e); 0.1% | 0.0% |

if (seedl < 0) seedl += shiftl; 0.2%] 0.2% |
seed? = ecuyer_d¥(seedZ-kK2*ecuyer_e)-k2¥ecuyer_T; 1.0%[D.B%l
if (seed2 < 0) seed2 += shiftZ; 0.7%] 0.4% |

tahlelindex1[A]1 = seedl: LA 0 3% [

Selected 1 rowi(s):
7

4]
Ee] Filter: 97.4% is shown [RESEETSEIER [©7. 4%] test40 al Thread: [EX] hd

\ »
™ 17 Workflow
CERN

openlab
> The basic steps to get
going are identical to

(Re)Build target

--—-----0Optional---==---
H (1] 7
Create/Open those in “Inspector
project and choose [Configure)
target target

> The custom workflow

[Configure) for this application is
. also similar to

Interpret and handle

et and “Inspector’s” and is
Interpret results *E]E:::lf::er;::}:-ltg ShOWI‘I On the right

Analyze source

¥

Resolve issue

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 23

Inspector

Threading and memory correctness

\»
."
CERN

openlab

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

\ »

" 17 Introduction

CERN

openlab

> A dynamic memory and threading error
checking tool

> Languages supported:
m C, C++, C#, Fortran

> Technologies supported:
" TBB, Cilk+, pthreads, Windows threads, OpenMP

> Operating systems supported (same

functionality):
" | inux
=" Windows

> Replacement tool for Thread Checker

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 25

\ ’ [[
W iy Features - instrumented analysis
CERN

openlab . .
> Memory error detection and location

" Detect leaks
® Detects memory leaks

® Detect memory problems
* |In addition to the above: detects uninitialized accesses

" | ocate memory problems
* |In addition to the above: detects dangling pointers, enables

guard zones, deep stack analysis

> Threading error detection and location
® Detect deadlocks
® Detects lock hierarchy and deadlocks
® Detect data races

* |n addition to the above: detects cross-thread stack accesses,
data races
® | ocate deadlocks and data races
* |In addition to the above: collects stack, finer memory access
granularity

> Static security analysis
" Visualizes output from analysis performed with Intel compilers

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 26

mp/t40p - Intel Inspector XE 2011

File Help

T E =

rogomil roolmi3 (¥

@ Locate Memory Problems Intel Inspector XE 2011

" Analysis Type || B Collection Log

Problems

Error 2 itemis)

2] Uninitialized memory access [Unknown] hash Problem

Uninitialized memory access 2 itemis)

Source

[Unknown] 2 itemis)

Module
bash 2 itemis)

State
MNew 2 itemis)

Suppressed
Not suppressed 2 itemnis)

Investigated

Description « | Source Function Object Size Not investigated 2 item(s)

¥3 Allocation site = bash:0x0000000000056d13 xrealloc
X1 Read £ bash:0x000000000001eb40 [Unknown]

\ »

" " Basic workflow - overview
CERN

openlab
Choose/Create Build
project application
Run analysis C:;‘ﬁ#:irsﬂ

Rebuild
application

Choose
problem set

Resolve issue

GUI: Collect result

Interpret
result data

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 28

\ »
il Advanced workflow with regression testing
CERN

1. Establish baseline 2. Change
openlab | gt T " Optional ... source
~ code
Configure
target
&
(Rebuild) Configure A
el analysis

Run analysis y

.
Examine result data

during collection
r A4

3. Check for new problems

GUI: Collect result

=

ﬁ Choose problem set i

E Search for specific obsarvations 2
- b

(1] 51""

5 o

= Resolve issue Choose focus]

o observation (&

=2

L4

Interpret

result data Report result

data

Resolve issue
Create

suppression file

CLI: Manage result

Interpret
result data

CLI: Manage
suppressions

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 29

A
."
CERN

openlab

API

Instrumenting your programs for a streamlined optimization process

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

\ »

e API

ey
CERN

openlab

> You can use “Intel Threading Tools” calls in
your software in order to specify certain

actions
" Start and stop monitoring (data collection)
" Describe regions of your code
" Rename threads
" Describe synchronization objects
" Define loop limits

> Usage:
" Include ittnotify.h
" Link with ittnotify.a

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 31

\ »

il API - examples (Pause/Resume)

CERN

openlab)
// code, work — collection was started paused

// so no profiling data i1s gathered
ittt _resume(); // switch on profiling
// code, work (profiled)

__itt_pause(); // switch off profiling

> Example usage:
" Monitoring restricted to a certain routine
" Monitoring enabled only past a certain point

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 32

\ »

il API - examples (Frames)

CERN

openiab __1tt_frame frame = _1tt frame create(''G4 Events');
for € ...) {

__1tt_frame begin(frame);
// ... loop code

___1tt_frame _end(frame);

}

> Example usage:
" Designation of cyclic occurrences - such as events in a
physics simulation (for display/grouping purposes)
" Frame groups (“domains”) available
" Different frame groupings available

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 33

\ » i
il Frame grouping - example

CERN

openlab

fFrame Domain /Frames /Function /Call Stack CPU Timew | Module Function (Full)

v G4 Events 95.099s [

b 213 1.072s]

b217 1.069s]

b 237 1.051s]
1.050s
P sgrt 0.120s| testd0 sqrt
I GASteppingManager: DefinePhysicalSteplLength D.Uﬁls[testd0 G45teppingMa ...
P CLHEP::RanecuEngine::flat D.UEUS[testd0 CLHEP::Ranec ...
P G4Mag_UsualEgRhs::EvaluateRhsGivenB D.U-*-ms[testd0 G4Mag UsualE..
P GaMavigationLevelRep:: G4NavigationLevelRep 0.0405[testd0 GaMavigationL...

P GaUniversalFluctuation::SampleFluctuations D.Udﬂs[testd0 GdlUniversalFlu...
P exp.L 0.030s| test40 expl

P GAPEEffectModel:: ComputeCrossSectionPerAtom D.UBUS[testd0 G4PEEffectMod...
P GATrack: GetVelocity D.USUS[test40 GaATrack:: GetV ..

nnone | ok A

Selected 1 row(s):
r

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 34

\ »

™/ oy API - examples (Regions/events)
CERN

openlab

// ““10” refers to the length of the description string

__1tt_event ev_loop = 1ttt _event _create(“Event loop”, 10);
__1tt_event _start(ev_loop);
// ... Work ...

__1tt_event _end(ev_loop) ;

> Example usage:
® Designation of code regions (for display/grouping purposes), €.g.

” 1]

“Initialization”, “Detector construction”, “Simulation”, “Finalization”

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 35

\

e ¥
& 4
CERN & /pool/ws/7_testd0p/test40p-mg
openlab File Help

u

@ b=

ro0lcc x

M Concurrency - Hotspots

[Analysi

[Task Type fFunction /Call B
Stack
P Event loop
P Initialization
P[Outside any task]
< Pthread barrier (spawn barrier)
I* ParRunManager::DoEventLoop
I Pthread barrier {(end barrier)

Selected 1 row(s):

Qi

m-ﬂr out of 16 Frames ltem(s) shown

Frames

Start: 5.013s Duration: 0.210s
Frames: 48

Frame Domain: G4 Events
Frame Type: Slow

Frame Rate: 4.760637945

Frames

Start: 5.162s Duration: 0.199s
Frames: 49

Frame Domain: G4 Events
Frame Type: Slow

Frame Rate: 5.033375434

Frames

Start: 5.192s Duration: 0.210s
Frames: 51

Frame Domain: G4 Events
Frame Type: Slow

Frame Rate: 4.75940165

Frames

Start: 5.223s Duration: 0.204s
Frames: 52

Frame Domain: G4 Events
Frame Type: Slow

|Frame Rate: 4.910756221

Regions (“Task”) grouping - example

P
Z - Top-down Tree

Wait Time
O !dle @ Poor [JOk [l Ide
0.000s
0.000s
52.316s [
0.015s
0.015s
1.521s

Intel VTune Amplifier X€ 2011

Module Function (Full)

test40 ParRunManager:: DoE

Ruler Area

Thread (0x0)

v Frames

Thread (0x0)

[v] Thread

Thread (D...

[¥] @@ Running

CPU Usage |

[¥] 1 Waits

Thread Co... |

[+] iuk CPU Ti...

Frame Rate

T NN

[#*] == User ...

PYEE TR WA PR T

Transi...

IJ—I_I »

ol No filters are applied. RagRuIsVIEH [All] n

o1 =Td @Bl] Only user functions n

w

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

36

\ »

" 17 Takeaway advice

CERN

openlab

> Instrumented analysis might take quite a while
" Whenever possible, always try to choose a representative data
set for monitoring
® Reduce the detail level of the analysis; for example, in “Locks
and waits”, uncheck “Spin time data” and “Collect signals”
whenever you don’t need that data

> Hardware-level analysis is as fast as the application

itself
" No need to reduce your data set!

> The tools come with APIls which you can use to
instrument your source code

> Results on non-Intel CPUs should generally be fine,
but may be offset or incorrect

> Take a look at the documentation, it’s worth it!

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 37

\ »

" 17 Practical information

CERN

openlab

> Intel tools are available pre-installed CERN-

wide in the standard AFS folder

m /afs/cern.ch/sw/IntelSoftware
" |deally: source all-setup.sh and you’re set up

> For more information, read the openlab TWiki

or the openlab webpages
" http://twiki.cern.ch/ -> openlab web
" http://cern.ch/openlab

> Graphical version: amplxe-gul

> Command line: ampIxe-cl

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 38

http://twiki.cern.ch/�
http://cern.ch/openlab�

CERN

openlab

Other questions? andrzej.nowak@cern.ch

BACKUP

With material from the Intel tools documentation

\»
."
CERN

openlab

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

\ »
o"
CERN

openlab

Key terms (1)

analysis: A process during which the tool performs collection and
finalization.

code location: A fact the tool observes at a source code location,
such as a write code location. Sometimes called an observation.
A focus code location is a source code location with relationships
you choose to explore. A related code location is a source code
location with a relationship to a focus code location and possibly
other code locations.

collection: A process during which the tool executes an
application, identifies issues that may need handling, and
collects those issues in a result.

false positive: The tool detects something that is not an error.

false negative: The tool does not detect an error because the
problem may be too complex/big or involve too much
runtime/memory cost.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 41

\ »
o"
CERN

openlab

vV V

Key terms (2)

finalization: A process during which the the tool uses debug
information from binary files to convert symbol information into
filenames and line numbers, perform duplicate elimination, and
form problem sets.

problem: A small group of closely related code locations that
indicate an error in an application, such as a data race
problem.

problem set: A larger group of more loosely related code
locations that could share a common solution, such as a
problem set resulting from deallocating an object too early
during program execution. You can view problem sets only after
analysis is complete.

project: A compiled application, collection of configurable
attributes for the compiled application, and a container for
results and private suppression rules.

result: A collection of issues that may need handling.
target: An application you inspect for errors

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 42

\ »
o"
CERN

openlab

Key terms (3)

baseline: A performance metric used as a basis for comparison of the
application versions before and after optimization. Baseline should be
measurable and reproducible.

CPU time: The amount of time a thread spends executing on a logical
processor. For multiple threads, the CPU time of the threads is
summed. The application CPU time is the sum of the CPU time of all
the threads that run the application.

elapsed time: The total time your target ran, calculated as follows:
Wall clock time at end of application — Wall clock time at start of
application.

hotspot: A section of code that took a long time to execute. Some
hotspots may indicate bottlenecks and can be removed, while other
hotspots inevitably take a long time to execute due to their nature.

viewpoint: A preset result tab configuration that filters out the data
collected during a performance analysis and enables you to focus on
specific performance problems. When you select a viewpoint, you
select a set of performance metrics the tool shows in the
windows/panes of the result tab. To select the required viewpoint, use
the drop-down menu (“wrench”) at the top of the result tab.

wait time: The amount of time that a given thread waited for some
event to occur, such as: synchronization waits and 1/0 waits.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 43

\ »
o"
CERN

openlab

Key Concept: CPU Utilization

> For the Concurrency and the Locks and Waits

analyses, the Intel(R) VTune(TM) Amplifier XE
identifies a processor utilization scale, calculates the
target concurrency, and defines default utilization
ranges depending on the number of processor cores.
You can change the utilization ranges by dragging the
slider in the Summary window.

Utilization |Default Description
Type color

Idle &
Poar 25
QK]
Ideal)
Cher B3

all threads in the program are waiting - no threads are running. There can be only one node in the
Summary chart indicating idle utilization,

Poor utilization, By default, poor utilization is when the number of threads is up to 0% of the target
CONCUrEncy.

acceptable (0K utilization. By default, OK utilization is when the number of threads is between 51-85%
of the target concurrency,

Ideal utilization. By default, ideal utilization is when the number of threads is between 86-115% of the
target concurrency.

Cwer-utilization, By default, over-utilization is when the number of threads is more than 115% of the
target concurrency.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 44

\ »
."
CERN

openlab

Key Concept: Hardware-level Analysis

> The VTune Amplifier XE introduces a set of advanced hardware

analysis types based on the event-based sampling data
collection and targeted for the Intel(R) Core(TM) 2 processor
family and processors based on the Intel(R) microarchitecture
codename Nehalem. Depending on the analysis type, the VTune
Amplifier XE monitors a set of hardware events and, as a result,
provides collected data per, so-called, hardware performance
metrics defined by Intel architects (for example, Clockticks per
Instructions Retired, Contested Accesses, and so on). Each
metric is an event ratio with its own threshold values. As soon
as the performance of a program unit per metric exceeds the
threshold, the VTune Amplifier XE marks this value as a
performance issue and provides recommendations how to fix it.

Typically, you are recommended to start with the General
Exploration analysis type that collects the maximum number of
events and provides the widest picture of the hardware issues
that affected the performance of your application.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 45

\ »
."
CERN

openlab

Key Concept: Hotspots Analysis

> The Hotspots analysis helps understand the application flow

and identify sections of code that took a long time to execute
(hotspots). A large number of samples collected at a specific
process, thread, or module can imply high processor utilization
and potential performance bottlenecks. Some hotspots can be
removed, while other hotspots are fundamental to the
application functionality and cannot be removed.

The Intel(R) VTune(TM) Amplifier XE creates a list of functions
in your application ordered by the amount of time spent in a
function. It also detects the call stacks for each of these
functions so you can see how the hot functions are called.

> The VTune Amplifier XE uses a low overhead (about 5%)

statistical sampling algorithm that gets you the information you
need without a significant slowing of application execution.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 46

\
N 2" Key Concept: Locks and Waits Analysis
CERN

openlab

> While the Concurrency analysis helps identify where
your application is not parallel, the Locks and Waits
analysis helps identify the cause of the ineffective
processor utilization. One of the most common
problems is threads waiting too long on
synchronization objects (locks). Performance suffers
when waits occur while cores are under-utilized.

> During the Locks and Waits analysis you can
estimate the impact each synchronization object
introduces to the application and understand how
long the application was required to wait on each
synchronization object, or in blocking APIs, such as
sleep and blocking 1/0.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 47

\ »
."
CERN

openlab

Key Concept: Choosing Small, Representative
Data Sets

> When you run a dynamic analysis, the tool executes
an application against a data set. Data set size has a
direct impact on application execution time and
analysis speed.

> You can control analysis cost without sacrificing
completeness by removing redundancies from your
data set (e.g. redundant iterations).

> Instead of choosing large, repetitive data sets,
choose small, representative data sets. Data sets
with runs in the seconds time range are ideal. You
can always create additional data sets to ensure all
your code is inspected.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 48

\ »
."
CERN

openlab

Key Concept: Data of Interest

> The VTune Amplifier XE maintains a special column called Data
of Interest. This column is highlighted with yellow background
and a yellow star in the column header .

> The data in the Data of Interest column is used by various

windows as follows:
" The Call Stack pane calculates the contribution, shown in the
contribution bar, using the Data of Interest column values.
" The Filter bar uses the data of interest values to calculate the
percentage indicated in the filtered option.
" The Source/Assembly window uses this column for hotspot
navigation.

> |If a viewpoint has more than one column with numeric data or

bars, you can change the default Data of Interest column by
right-clicking the required column and selecting the Set
Column as Data of Interest command from the pop-up menu.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 49

\
W :’: Key Concept: Finalization
CERN

openlab

> Finalization is a process when the VTune
Amplifier XE converts the collected data to a
database, resolves symbol information, and
pre-computes data to make further analysis
more efficient and responsive. The VTune
Amplifier XE finalizes data automatically
when generating results.

> You may want to re-finalize a result to:
" update symbol information after changes in the

search directories settings
" resolve the number of [Unknown]-s in the results

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 50

\ »
o"
CERN

openlab

“Amplifier”: Algorithm analysis

Algorithm analysis branch introduces analysis types targeted for
software tuning. You run the analysis and use the collected data to
understand where you could choose a better algorithm, and improve
the application performance. Algorithm analysis includes the following
analysis types:

Lightweight Hotspots: Event-based sampling analysis that monitors all
the software executing on your system including the operating system
modules. The collector interrupts the processor at the specified
sampling interval and collects samples of instruction addresses.

Hotspots: Performance analysis based on the user-mode sampling and
tracing collection. It focuses on a particular target, identifies functions
that took the most CPU time to execute, restores the call tree for each
function, and shows thread activity.

Concurrency: Performance analysis based on the user-mode sampling
and tracing collection. It focuses on a particular target, identifies
functions that took the most CPU time to execute, and shows how well
your application is threaded for the existing number of logical CPUs.

Locks and Waits: Performance analysis based on the user-mode
sampling and tracing collection that helps identify the synchronization
objects that caused ineffective CPU usage.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 51

\ » " gn "
il “Amplifier”: Hardware-level analysis
CERN

openlab

> The Advanced hardware-level analysis introduces a set of
analysis types based on the event-based sampling data
collection and targeted for the Intel(R) Core(TM) 2 processor
family and Intel(R) microarchitecture codename Nehalem.

> General Exploration: Event-based analysis that helps identify
the most significant hardware issues affect the performance of
your application. Consider this analysis type as a starting point
when you make the hardware-level analysis on Intel
microarchitecture codename Nehalem.

> Cycles and uOps: Event-based analysis that helps understand
where the cycles and uOps issues affect the performance of
your application.

> Front End Investigation: Event-based analysis that helps
understand where the front end issues affect the performance
of your application.

> Memory Access: Event-based analysis that helps understand
where the memory access issues affect the performance of
your application.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 52

\ . | | | | | | | |
il Amplifier: Timeline view

CERN ey

openlab Running The time threads are active. Hotspots, Hotspots by CPU Usage,
Hotspots by Thread Concurrency,
Locks and Waits
Waits The time threads are spending waiting for a particular ohject, Hotspots by Thread Concurrency,
Locks and Waits
Transition The execution flow between threads where one thread signals ta another |Hotspots by Thread Concurrency,
thread waiting to receive that signal. For example, one thread attempts | Locks and \Waits
to acquire a lock held by another thread, which then releases it. The
release acts like a signal to the waiting thread.
CPU Time The CPU time utilization by a thread during the application run. Hotspots, Hotspots by CPU Usage,
Lightweight Hotspots, Hotspots by
Thread Concurrency
Analysis Metrics
CPU Usage The CPU time utilization owver time for the whole application. Hotspots, Hotspots by CPU Usage
Thread Concurrency The concurrency level for the whale application, Hotspots, Hotspots by Thread
Concurrency, Locks and Waits
Hardware Events Sample |Distribution of the application performance per metric aver time. This Hardware Event Counts, Hardware
Count data is available for the event-based analysis sampling collection types Event Sample Counts, Hardware
where each metric is based on 2 set of processor events, Izsues
Ot 5 10s 15 20s 255 30s 35 40s a5z T |4 Thread
| T T T TN T TN T TN S N TN TN T TN (NN T TN TN T NN TN TR TN TN Y TN TN ST TN [N TN TN Y TN TN TN TN TR T [N T TR S S [S T | -Running
n . T
winMainCRTStartup... | A _ | II -
=
E BackgroundThreadP. .. |_I . _ : Transition
£ |thread_video (4784) i P stk . e
threadstartex (2244) L oo, kAo L 14 | CPU Usage over Time

Thread Concurrency

Thread CoNCUTEncy |y itibenbdoostsisssiosndinaaibeisomelliosssionlioms ' luk, Simitaneously Running Threads

i »

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 53

CERN

openlab

m General Exploration - Hardware Issues £ @ Intel VTune Amplifier X€ 2011

@ Analysis Target| | © Analysis Type| |E® Collection Log % Bottom-up

Hardware Event Count CPl Reti... LLC LLC Con... Instr... Bra... Exe... Data

LT Rate Stalls Miss Loa... Acc... Star... Mis... Stalls Sha...

CLHEP::Ranecukngine::flat

G4UniversalFluctuation::SampleFluctug 11,956,000,000 6,536,000,000 1.829 0.718 0.000 0.000 0.000 0.233 0.121 0.339 0.000
sqrt 10,648,000,000 13,256,000,000 0.803 0.696 0.000 0.000 0.000 0.271 0.012 0.156 0.000
log.L 7,802,000,000 95,206,000,000 0.847 0.480 0.000 0.000 0.000 -0.047 0.012 0.1597 0.000
G4Step::UpdateTrack 6,468,000,000 9,112,000,000 0.710 0.458 0.000 0.000 0.000 0.229 0.014 0.149 0.000
G4VoxelNavigation::LevelLocate 5,740,000,000 9,450,000,000 0.607 0.476 0.009 0.000 0.000 0.104 0.012 0.186 0.000
G4Track:: GetVelocity 5,570,000,000 4,864,000,000 1.145 0.686 0.000 0.000 0.000 0.387 0.00&6 0.215 0.000
G4NavigationLevelRep::G4NavigationL| 5,068,000,000 10,680,000,000 0.475 0.174 0.000 0.000 0.000 0.180 0.001 0.077 0.000
exp.L 4500,000,000 6,292,000,000 0.715 0.393 0.000 0.214 0.026 0.225 0.000

G4PhysicsVector:: GetValue 4,180,000,000 2,846,000,000
Selected 1 row(s):| 17,672,000,000 11,424,000,000

Ruler Area
— . e o e e e e e e R e e 7 & e T T] v~ Frames
Thread (0... [+] Thread
Thread (0... [v] 8 Running
Thread (0... [+] duk Hardw. ..
Hardware ... Hardware ...
ik Hardw. ..
Frame Rate | |

Frame Rate

e No filters are applied. RygRUIsFIE [A 1] n

	�CERN IT Technical Forum
	Agenda
	Slide Number 3
	The case for optimization
	Intel software tools
	CERN openlab participation
	Package components (both tools)
	VTune Amplifier
	Rationale
	Functionality
	Issue detection capacity
	Select features
	An example from the HEP world
	LAB – Part 1
	Timeline view
	Slide Number 16
	Concurrency histogram
	Locks and waits analysis (1)
	Locks and waits analysis (2)
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Workflow
	Inspector
	Introduction
	Features – instrumented analysis
	Slide Number 27
	Basic workflow - overview
	Advanced workflow with regression testing
	API
	API
	API – examples (Pause/Resume)
	API – examples (Frames)
	Frame grouping - example
	API – examples (Regions/events)
	Regions (“Task”) grouping - example
	Takeaway advice
	Practical information
	Slide Number 39
	BACKUP
	Key terms (1)
	Key terms (2)
	Key terms (3)
	Key Concept: CPU Utilization
	Key Concept: Hardware-level Analysis
	Key Concept: Hotspots Analysis
	Key Concept: Locks and Waits Analysis
	Key Concept: Choosing Small, Representative Data Sets
	Key Concept: Data of Interest
	Key Concept: Finalization
	“Amplifier”: Algorithm analysis
	“Amplifier”: Hardware-level analysis
	Amplifier: Timeline view
	Amplifier: working with performance events

