

CERN and Clouds

CNES Cloud Seminar

HCh

27 km

CERN Prévessin

MS

ATLAS

CERN Meyrin

Tim Bell

tim.bell@cern.ch

About CERN

CERN is the European Organization for Nuclear Research in Geneva

- Particle accelerators and other infrastructure for high energy physics (HEP) research
- Worldwide community
 - 21 member states (+ 2 incoming members)
 - Observers: Turkey, Russia, Japan, USA, India
 - About 2300 staff
 - >10'000 users (about 5'000 on-site)
 - Budget (2014) ~1000 MCHF

Birthplace of the World Wide Web

COLLISIONS

The Worldwide LHC Computing Grid

TIER-0 (CERN): data recording, reconstruction and distribution

TIER-1: permanent storage, re-processing, analysis

TIER-2: Simulation, end-user analysis

nearly 170 sites, 40 countries

~350'000 cores

500 PB of storage

> 2 million jobs/day

10-100 Gb links

LHC Data Growth

Expecting to record 400PB/year by 2023 with the High Luminosity LHC upgrade

Where is x3 improvement?

The outline LHC schedule out to 2035 presented by Frederick Bordry to the SPC and FC June 2015 can be found here

THE CERN MEYRIN DATA CENTRE

2777 Barris

http://goo.gl/maps/K5SoG

Tim Bell - CNES Cloud Seminar

1

Public Procurement Cycle

Step	Time (Days)	Elapsed (Days)
User expresses requirement		0
Market Survey prepared	15	15
Market Survey for possible vendors	30	45
Specifications prepared	15	60
Vendor responses	30	90
Test systems evaluated	30	120
Offers adjudicated	10	130
Finance committee	30	160
Hardware delivered	90	250
Burn in and acceptance	30 days typical with 380 worst case	280
Total		280+ Days

Good News, Bad News

- Additional data centre in Budapest now online
- Increasing use of facilities as data rates increase

But...

- Staff numbers are fixed, no more people
- Materials budget decreasing, no more money
- Legacy tools are high maintenance and brittle
- User expectations are for fast self-service

Innovation Dilemma

- How can we avoid the sustainability trap?
 - Define requirements
 - No solution available that meets those requirements
 - Develop our own new solution
 - Accumulate technical debt
- How can we learn from others and share ?
 - Find compatible open source communities
 - Contribute back where there is missing functionality
 - Stay mainstream

Are CERN computing needs really special ?

O'Reilly Consideration

Job Trends Consideration

OpenStack Community five years in...

04/02/2016

Packaging

Integration

Burn In

SLA

Monitoring

. . .

Workloads

- CERN's cloud provides a centralised resource portal
 - Project structures define roles
 - Accounting showback
 - Resource lifecycle
- For
 - Cloud native applications
 - Virtual batch machines
 - Production server consolidation (with some constraints)
 - Development/test servers

OpenStack Status

- 4 OpenStack clouds at CERN
 - Largest is ~150,000 cores in ~5,000 servers with 60,000 to be installed for 1H 2016
 - 3 other instances with 45,000 cores total
- Collaborating with companies at every 6 month open design summits
 - Paris summit in 2014 with ~5,000 attendees
 - Share experiences and design next release
 - Operations meetups such as large deployments and scientific working groups
 - All CERN code of interest is contributed upstream

Hooke's Law for Cultural Change

Under load, an organization can extend proportional to external force

Too much stretching leads to permanent deformation

CFRN

Past, ongoing & future commercial activities@CERN

H BULA THESCIENCECLOUD

•

HN - Helix Nebula

Partnership between research organization and European commercial cloud providers

* EC co-funded joint Pre-Commercial Procurement (PCP) project: <u>https://indico.cern.ch/event/319753</u> ** Other work has been conducted outside CERN, such as the <u>Amazon Pilot project at BNL for ATLAS</u>

Summary

- Open source tools have successfully replaced CERN's legacy fabric management system
- Private clouds provide a flexible base for High Energy Physics and a common approach with public resources
- Cultural change to an Agile approach has required time and patience but is paying off
- CERN's computing challenges combined with research organisations, industry and open source collaboration fosters sustainable innovation

For Further Information

CMS Experiment at LHC, CERN Data recorded: Wed May 20 22:51:10 2015 CEST Run/Event: 245155 / 123300843 Lumi section: 363 Orbit/Crossing: 94976371 / 208 Technical details at <u>http://openstack-in-</u>production.blogspot.fr

Helix Nebula Initiative at http://www.helix-nebula.eu/

Scientific Working Group at <u>https://wiki.openstack.org/wiki/Scien</u> tific_working_group

Some history of scale...

Date	Collaboration sizes	Data volume, archive technology		
Late 1950's	2-3	Kilobits, notebooks	For comparison: 1990's: Total I EP data set	
1960's	10-15	kB, punchcards	~few TB	
1970's	~35	MB, tape	Would fit on 1 tape today	
1980's	~100	GB, tape, disk	Today: 1 year of LHC data	
1990's	~750	TB, tape, disk	~27 PB	
2010's	~3000	PB, tape, disk		

04/02/2016

Tim Bell - CNES Cloud Seminar

OpenStack Collaborations

- Large Deployment Team
 - Walmart, Yahoo!, Rackspace, eBay, Paypal, ...
- Containers
 - Rackspace, Red Hat
- OpenStack Scientific Working Group
 - Not just academic
 - High Performance and High Throughput

